The Research of Low Temperature Performance of Asphalt Mixture

2010 ◽  
Vol 168-170 ◽  
pp. 2507-2512
Author(s):  
Cai Li Zhang ◽  
Lian Yu Wei ◽  
Qing Ying Meng

To address Superpave graded and AC graded asphalt mixture, bending test at low temperature and thermal stress restrained sample tests are used respectively to evaluate the low temperature performance of asphalt mixture. Meanwhile, contrast analysis of the two test methods and the low temperature performance of two asphalt mixture are studied, too. The results show that Superpave method can effectively improve low temperature perfomance of asphalt mixture. In the thermal stress restrained sample tests, freezing temperature and transition point temperature can evaluate the low temperature cracking resistance of Superpave asphalt mixture well. In bending test at low temperature, bending strain energy density should be considered as evaluation index to the characterization for low temperature performance of asphalt mixture. That also closely meets the result of the rmal stress restrained sample tests.

2013 ◽  
Vol 477-478 ◽  
pp. 1175-1178
Author(s):  
Ling Zou ◽  
Jing Wei Ne ◽  
Weng Gang Zhang

70# and 90# matrix asphalt mixture with MaR were studied through dynamic modulus test, rutting test, freeze-thaw splitting test, bending test to study the applicability of the Modifying agent of rubber plastic compound (MaR) in matrix asphalt mixture.Test results were Compared with SBSI-C modified asphalt mixture.The results indicate that: high-temperature stability of MaR+70# asphalt mixture is as well as SBSI-C modified asphalt mixture,and is bettere than MaR+90# asphalt mixture; water stability of MaR+90# asphalt mixture is bettere than SBSI-C modified asphalt mixture and MaR+70# asphalt mixture; low temperature performance of MaR+90# asphalt mixture is bettere than MaR+70# asphalt mixture, but is worse than modified asphalt mixture SBSI-C ; MaR+70# asphalt mixture can be first used in area of resisting high temperature and rutting, MaR+90# asphalt mixture can be used if the water stability performance and low temperature performance are considered.


Coatings ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1070
Author(s):  
Cheng Xu ◽  
Zhengqi Zhang ◽  
Feifei Liu

To improve the low-temperature performance of RET (Reactive Elastomeric Terpolymer) modified asphalt mixture (RETM), polyurethane prepolymer (PUP) was used by wet process, ground waste rubber (GWR) and fibers were used by dry process. Tests of force ductility, bending beam rheometer (BBR), differential scanning calorimeter (DSC), viscosity and multiple stress creep recovery (MSCR) were conducted to study the effects of PUP on the performance of RET modified asphalt (RETA), and beam bending test was conducted to study the effects of GWR and fibers on the performance of RETM. Then, tests of beam bending, wheel tracking, Marshall immersion, freeze-thaw splitting, and economic analysis were further conducted to compare the performance and economy of RETM modified with optimum modifiers suggested. All modifiers improve the low-temperature performance of RETM. PUP content, the content and size of GWR and the content and type of fibers significantly affect the performance of RETA or RETM respectively. After analysis, 10% PUP, 2.1% 80 mesh GWR and 0.2% polyester (PE) fiber are considered as the optimum modifiers, respectively. Comparison results show that optimum modifiers variously improve the low-temperature performance, rutting resistance and moisture susceptibility of RETM, but they slightly reduced the economy of RETM. Comprehensive evaluation shows that 2.1% 80 mesh GWR and 10% PUP are better than 0.2% PE fiber.


2014 ◽  
Vol 587-589 ◽  
pp. 1332-1336
Author(s):  
Jun Qing Chen ◽  
Ai Jun Li ◽  
Mei Qian Jin ◽  
Min Nan Zheng ◽  
Wan Yi Yang

Prone to low temperature cracking of asphalt pavement problems in cold areas, testing BBR on 70# base asphalt and 4 kinds of different dosage of SBS modified asphalt, testing TSRST on their mixture to appraisal the low temperature performance of SBS modified asphalt mixture. Results show that compared with the temperature stress of internal cracks of base asphalt and SBS modified asphalt mixture not rise significantly. But the stress of SBS asphalt mixture growing slow and the temperature of cracking reduce obviously; it means the low temperature performance improved. This shows that SBS improves the toughness and reduced the modulus of asphalt mixture in low temperature, rather than increasing the tensile strength of mixture specimens.


2010 ◽  
Vol 34-35 ◽  
pp. 1124-1128 ◽  
Author(s):  
Sang Luo ◽  
Zhen Dong Qian

Low-temperature cracking is a significant and costly problem for pavement on the orthotropic steel deck. As a popular material used on the steel deck pavement, the low-temperature performance of epoxy asphalt mixture was investigated. In this research, the three-point bending test, the thermal stress restrained specimen test (TSRST) and the coefficient of thermal contraction test were conducted to achieve the flexural strain energy, the fracture temperature, and the coefficient of thermal contraction respectively. Test results show that epoxy asphalt mixture performs excellently on low-temperature properties and has a prominent deformation compliance with the steel deck. Findings from the research indicate that epoxy asphalt mixture is an alternative material paved on the orthotropic steel deck due to its profound low-temperature performance.


2011 ◽  
Vol 413 ◽  
pp. 246-251 ◽  
Author(s):  
Yi Bo Zhang ◽  
Hong Zhou Zhu ◽  
Guo An Wang ◽  
Tuan Jie Chen

According to the low temperature disease on asphalt pavement in the areas of cold and large temperature difference between day and night, conventional index test and low temperature bending creep test were used to analyze the influence of diatomite dosage on the low temperature performance of diatomite modified asphalt, and the mixture’s low temperature bending test was applied for verification. Test results show that after diatomite’s addition into asphalt, equivalent brittle point reduces significantly, ductility test cannot estimate low temperature performance very well, stiffness modulus increases and relaxation ability decreases; meanwhile, peak value of stiffness modulus and strain energy of asphalt mixture can be found, the low temperature crack resistance is enhanced; optimum dosage of diatomite is 13%. So, the low temperature performance evaluation method of diatomite modified asphalt mixture through BBR’s low temperature performance evaluation on diatomite modified asphalt remains to be discussed.


2012 ◽  
Vol 193-194 ◽  
pp. 427-430
Author(s):  
Si Si Lv

In order to characterize how the temperature influence Low Temperature anti-cracking performance and the ability of asphalt mixture resist low temperature, on the basis of bending test at low temperature, this paper from the angle of energy, introduce the concept of failure energy per unit volume as the evaluation index for the low temperature performance of asphalt mixture. Meanwhile, this paper used this evaluation index to perform bending test at low temperature for two kinds of different type of asphalt mixture which under three temperature as follows:0°C,-10°C,-20°C, And separately calculated failure energy per unit volume, then analyzes the characteristics and regularity of the index.


2022 ◽  
Vol 2152 (1) ◽  
pp. 012005
Author(s):  
Peng Yin ◽  
Yuanguang Xie ◽  
Huixi Lang

Abstract Different binder content to RAP Regeneration SBS modified asphalt mixture for road performance to SBS modified asphalt (I-D type) as an index, determine the optimum dose of new heat regenerating agent and different RAP regeneration, and prepared different recycled asphalt, which have differences in RAP content. The performance of recycled asphalt mixture with different RAP content was evaluated by freeze-thaw splitting test. Rut test and Low temperature trabecular bending test. The correlation between RAP content and pavement performance was analyzed by grey system correlation analysis method. According to the experimental verification results, it can be known that increasing the content of RAP material can improve the high-temperature performance of reclaimed asphalt, but will result in a qualitative decrease in low-temperature performance and water temperature, but the above-mentioned performance can reach the required level, Shows that new heat regenerators play a role in the road performance of RAP materials, and for the RAP material utilization ratio of more than 50%, as for the gray correlation analysis, it can be found that there is a close correlation between the low-temperature performance of recycled asphalt mixture and the content of RAP material. The low temperature cracking resistance of asphalt mixtures will change significantly due to the slight changes in RAP materials.


2021 ◽  
Vol 11 (9) ◽  
pp. 4029
Author(s):  
Jian Wang ◽  
Pui-Lam Ng ◽  
Yuhua Gong ◽  
Han Su ◽  
Jinsheng Du

Porous asphalt mixture can be used as a road surface paving material with the remarkable advantage to prevent water accumulation and ponding. However, the performance of porous asphalt mixture in low temperature environment has not been thoroughly investigated, and this forms the subject of research in the present study. The mineral aggregate gradation of porous asphalt mixture was designed based on Bailey method, and the low temperature performance of porous asphalt mixture was studied by means of the low temperature bending test. The factors affecting the low temperature performance of porous asphalt mixture were analyzed through the orthogonal experimental design method, and the effects of porosity, modifier content, aging condition, and test temperature on the low temperature performance of porous asphalt mixture were evaluated. The results showed that the modifier content was the most important factor affecting the low temperature performance of porous asphalt mixture, followed by the test temperature, while the porosity and the aging condition were the least. Among the three performance evaluation indicators, namely the flexural tensile strength, maximum bending strain, and bending stiffness modulus, the maximum bending strain had the highest sensitivity to the porosity. It can be seen from the single factor influence test of porosity that there existed an approximately linear relationship between the maximum bending strain and the porosity of porous asphalt mixture, and the maximum bending strain decreased with increasing porosity. Furthermore, in order to ensure the good working performance of porous asphalt mixture in low temperature environment, the porosity should also satisfy the required limits of the maximum bending strain.


2012 ◽  
Vol 251 ◽  
pp. 436-441 ◽  
Author(s):  
Wei Liu

The warm mix regeneration technology has prominent economical efficiency that can not only reduce the secondary aging of new asphalt and old asphalt in RAP materials during the production process, but also improve the use proportion of RAP materials. As for the increase of RAP dosage and the warm mix additive added to influence the plant regenerated asphalt mixture performance, this paper adopts two kinds of warm mix additive for the test and analysis of the warm mix regenerated asphalt mixture performance with 20% and 60% RAP. The results indicate that magnify the proportion of RAP percentage makes contribution to further improve high-temperature performance of the regenerated mixture, but it has adverse effects on water resistant damage performance and low-temperature performance. At the same time, adopting the warm mix additive can significantly reduce the adverse effect, so warm mix regenerated technology has better feasibility.


Sign in / Sign up

Export Citation Format

Share Document