Study on Low Temperature Performance of SBS Modified Asphalt and its Mixture

2014 ◽  
Vol 587-589 ◽  
pp. 1332-1336
Author(s):  
Jun Qing Chen ◽  
Ai Jun Li ◽  
Mei Qian Jin ◽  
Min Nan Zheng ◽  
Wan Yi Yang

Prone to low temperature cracking of asphalt pavement problems in cold areas, testing BBR on 70# base asphalt and 4 kinds of different dosage of SBS modified asphalt, testing TSRST on their mixture to appraisal the low temperature performance of SBS modified asphalt mixture. Results show that compared with the temperature stress of internal cracks of base asphalt and SBS modified asphalt mixture not rise significantly. But the stress of SBS asphalt mixture growing slow and the temperature of cracking reduce obviously; it means the low temperature performance improved. This shows that SBS improves the toughness and reduced the modulus of asphalt mixture in low temperature, rather than increasing the tensile strength of mixture specimens.

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 771
Author(s):  
Yu Sun ◽  
Dongpo He

The mixture of styreneic methyl copolymers (SMCs) normal temperature-modified asphalt and styrene-butadiene styrene block copolymer (SBS)-modified asphalt (SMCSBS) compound-modified asphalt was investigated in this study. The viscosity and temperature properties of compound modified asphalt (SMCSBS) were studied by Brookfield rotary viscosity test. Dynamic shear rheometer (DSR) and bending beam rheometer (BBR) were used to test SMCSBS compound modified asphalt with different SMC additions. Finally, the microstructure and physicochemical properties of SMCSBS were evaluated by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR), and the modification mechanism of the SMCSBS was studied. The results show that the viscosity of the compound-modified asphalt added with SMC is improved, which is conducive to improving its workability. With the increase of SMC content, the high-temperature performance of the compound modified asphalt firstly increases and then decreases with the increase of SMC content. When the content of SMC is 12%, its high-temperature performance is the best. Compared with SBS-modified asphalt, the SMCSBS has better low-temperature performance, and the creep stiffness S and creep rate m of the SMC with different content are better than that of SBS. Finally, the microcosmic characteristics show that the SMC can give full play to its characteristics and can be uniformly dispersed in SBS modified asphalt. SMC is essentially a surfactant, which can reduce the viscosity and construction temperature by changing the surface tension and surface free energy of asphalt molecules. The curing agent of epoxy resin is slowly cross-linked and cured after contacting with air to form a certain strength, thus improving the road performance of the asphalt mixture.


2014 ◽  
Vol 1079-1080 ◽  
pp. 152-155
Author(s):  
Yuan Yuan Wang ◽  
Lu Sun

Using the waste pavement materials can not only save resources such as bitumen and aggregate, but also reduce the pollution of environment. In this study, the high temperature performance and the moisture stability of recycled SBS modified asphalt mixture were evaluated by rutting test, immersion Marshall Test and freeze-thaw splitting routine test. In addition, the low temperature performance of recycled modified mixture was also analyzed by Fénix test whose operation was simple. The tests results illustrated that it was advantageous to improve the high temperature performance of recycled mixture and it has less influence on moisture stability with the addition of RAP. However, it had a significant adverse effect on the low temperature performance for recycled SBS modified asphalt mixture with a large quantity of RAP content. Therefore, it suggests that the RAP content for recycled SBS modified mixture is not too high.


2022 ◽  
Vol 2152 (1) ◽  
pp. 012005
Author(s):  
Peng Yin ◽  
Yuanguang Xie ◽  
Huixi Lang

Abstract Different binder content to RAP Regeneration SBS modified asphalt mixture for road performance to SBS modified asphalt (I-D type) as an index, determine the optimum dose of new heat regenerating agent and different RAP regeneration, and prepared different recycled asphalt, which have differences in RAP content. The performance of recycled asphalt mixture with different RAP content was evaluated by freeze-thaw splitting test. Rut test and Low temperature trabecular bending test. The correlation between RAP content and pavement performance was analyzed by grey system correlation analysis method. According to the experimental verification results, it can be known that increasing the content of RAP material can improve the high-temperature performance of reclaimed asphalt, but will result in a qualitative decrease in low-temperature performance and water temperature, but the above-mentioned performance can reach the required level, Shows that new heat regenerators play a role in the road performance of RAP materials, and for the RAP material utilization ratio of more than 50%, as for the gray correlation analysis, it can be found that there is a close correlation between the low-temperature performance of recycled asphalt mixture and the content of RAP material. The low temperature cracking resistance of asphalt mixtures will change significantly due to the slight changes in RAP materials.


2013 ◽  
Vol 477-478 ◽  
pp. 1175-1178
Author(s):  
Ling Zou ◽  
Jing Wei Ne ◽  
Weng Gang Zhang

70# and 90# matrix asphalt mixture with MaR were studied through dynamic modulus test, rutting test, freeze-thaw splitting test, bending test to study the applicability of the Modifying agent of rubber plastic compound (MaR) in matrix asphalt mixture.Test results were Compared with SBSI-C modified asphalt mixture.The results indicate that: high-temperature stability of MaR+70# asphalt mixture is as well as SBSI-C modified asphalt mixture,and is bettere than MaR+90# asphalt mixture; water stability of MaR+90# asphalt mixture is bettere than SBSI-C modified asphalt mixture and MaR+70# asphalt mixture; low temperature performance of MaR+90# asphalt mixture is bettere than MaR+70# asphalt mixture, but is worse than modified asphalt mixture SBSI-C ; MaR+70# asphalt mixture can be first used in area of resisting high temperature and rutting, MaR+90# asphalt mixture can be used if the water stability performance and low temperature performance are considered.


Coatings ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1070
Author(s):  
Cheng Xu ◽  
Zhengqi Zhang ◽  
Feifei Liu

To improve the low-temperature performance of RET (Reactive Elastomeric Terpolymer) modified asphalt mixture (RETM), polyurethane prepolymer (PUP) was used by wet process, ground waste rubber (GWR) and fibers were used by dry process. Tests of force ductility, bending beam rheometer (BBR), differential scanning calorimeter (DSC), viscosity and multiple stress creep recovery (MSCR) were conducted to study the effects of PUP on the performance of RET modified asphalt (RETA), and beam bending test was conducted to study the effects of GWR and fibers on the performance of RETM. Then, tests of beam bending, wheel tracking, Marshall immersion, freeze-thaw splitting, and economic analysis were further conducted to compare the performance and economy of RETM modified with optimum modifiers suggested. All modifiers improve the low-temperature performance of RETM. PUP content, the content and size of GWR and the content and type of fibers significantly affect the performance of RETA or RETM respectively. After analysis, 10% PUP, 2.1% 80 mesh GWR and 0.2% polyester (PE) fiber are considered as the optimum modifiers, respectively. Comparison results show that optimum modifiers variously improve the low-temperature performance, rutting resistance and moisture susceptibility of RETM, but they slightly reduced the economy of RETM. Comprehensive evaluation shows that 2.1% 80 mesh GWR and 10% PUP are better than 0.2% PE fiber.


2013 ◽  
Vol 438-439 ◽  
pp. 369-372
Author(s):  
Ning Li Li ◽  
Xin Po Zhao ◽  
Cai Li Zhang ◽  
Hu Hui Li ◽  
Qing Yi Xiao

During the service of asphalt pavement, the aging makes asphalt binder become brittle, gradually lose flexibility and adhesion. All these result in the low-temperature properties of asphalt pavement to be poor. This paper conducts the rolling thin film oven test (RTFOT) and pressure aging vessel (PAV) test on base asphalt and rubber-modified asphalt respectively. The bending beam rheometer (BBR) test was conducted on original asphalts, rolling thin film oven test (RTFOT) residuals and RTFOT + pressure aging vessel (PAV) residuals of base asphalt and rubber-modified asphalt respectively. Results indicate that the low-temperature properties of all aged asphalts were declined. The attenuation of low-temperature properties of RTFOT + PAV residuals is larger than that of the RTFOT residuals. The attenuation of different types of asphalt is different. From the overall trend, effect of aging on the low-temperature properties of asphalt binder reduced as the test temperature reduction. The rubber-modified asphalt has superior low-temperature performance than that of base asphalt, and its low-temperature performance decreases more slowly than the base asphalt.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Shuan Li ◽  
Xianghang Li ◽  
Xinquan Xu ◽  
Xiaoping Ji ◽  
Dawei Lv ◽  
...  

To reduce the temperature of asphalt pavements in summer and improve their high-temperature stability, tourmaline anion powder (TAP) was used as a modifier to prepare modified asphalt, which actively cools the pavement. The effects of different TAP contents on the high- and low-temperature performance of modified asphalt and its pavement cooling performance were studied based on the dynamic shear rheometer, low-temperature bending beam rheometer, and indoor rutting plate temperature difference tests; subsequently, the optimum TAP content was determined. Modified asphalt was used to prepare an active cooling antirutting asphalt mixture, and its pavement cooling performance was verified via outdoor lighting tests. High- and low-temperature dynamic modulus and low-temperature semicircular splitting tests were used to evaluate the high- and low-temperature performance; further, freeze-thaw splitting and immersion Marshall tests were performed to evaluate the water stability of the active cooling antirutting asphalt mixture. The results denote that TAP is useful for improving the rutting factor of asphalt. When the TAP content is 16% of the asphalt material, the maximum cooling value of the surface in laboratory tests becomes 5.9°C. When compared with an ordinary asphalt mixture, the dynamic stability of the active cooling antirutting asphalt mixture at medium and high temperatures increased by 18%–22%. The fracture energy can be increased by 12% at low temperatures. The maximum cooling value of the surfaces in outdoor tests is 7.2°C, and the water stability slightly decreases; however, it still satisfies the specification requirements.


2021 ◽  
Vol 13 (7) ◽  
pp. 4039
Author(s):  
Sara A. Alattieh ◽  
Ghazi G. Al-Khateeb ◽  
Waleed Zeiada

Fatigue cracking and low-temperature cracking are two major distresses that occur in asphalt pavements. Fatigue cracking is a load-associated distress caused by the tensile stresses at the bottom/top of the asphalt concrete (AC) layer due to repeated traffic loading. On the other hand, low-temperature cracking occurs when tensile stresses built up with in the AC layer at low temperatures exceed the tensile strength of that layer. In this study, the performance of date seeds oil bio-modified asphalt binders (DSO-BMB) is evaluated against fatigue and low-temperature cracking. The DSO-BMBs are prepared using volume ratios of 1.5, 2.5, 3.5, 4.5, and 5.5% date seeds oil-to-asphalt binder. The base asphalt binder used in the study is a 60/70-penetration grade with a Superpave performance grade (PG) of PG 64–16. The dynamic shear rheometer (DSR) standard test was used to assess the fatigue performance of the bio-modified binders (BMBs), while the bending beam rheometer (BBR) test was used to test the BMBs for low-temperature performance. In addition, the DSR linear amplitude sweep (LAS) test was used to evaluate the fatigue tolerance behavior of the DSO-BMBs. The analysis and results of the study showed that the bio-oil enhanced the low-temperature performance. The low PG grade improved from −16 °C for the control asphalt binder to −28 °C for the BMB. Additionally, the fatigue resistance of the BMBs was improved as illustrated by the damage–characteristic curves of the modified asphalt binders from the visco-elastic continuum damage (VECD) analysis and the increase in the number of cycles to fatigue failure (Nf).


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Haitao Zhang ◽  
Ying Wang ◽  
Zuoqiang Liu ◽  
Quansheng Sun

Although the aging asphalt and its regeneration were researched by many researchers, the poor low-temperature performance of regenerating asphalt has still not been solved yet. In this project, the composite technology of regeneration and modification will be used to solve the problem mentioned above. Through the investigation and analysis on the composite mechanism of regeneration and modification for aging asphalt, the objective of the project attempts to explore a method for the synchronized recovery of high- and low-temperature performance of aging asphalt. The research results show that the single regenerating technology cannot fully recover the low-temperature performance of aging asphalt, and the composite technology of regeneration and modification can make the performance of aging asphalt recovery well. The indexes of aging asphalt after composite regeneration and modification have been recovered, which are better than the indexes of 90# asphalt (25°C penetration is 80–100/0.1 mm) and close with the indexes of styrene-butadiene-styrene (SBS) modified asphalt. The project has demonstrated that the composite technology of regeneration and modification can make the high- and low-temperature performance of aging asphalt recovery well. The research results can obtain better economic and social benefits.


Sign in / Sign up

Export Citation Format

Share Document