Simulation Research of Inverted Plasma Cutting Power Supply Based on Fuzzy Control

2011 ◽  
Vol 179-180 ◽  
pp. 1229-1234
Author(s):  
De Li Jia ◽  
Rui Jia Wang ◽  
Chun Sheng Wang

Focusing on load characteristics of inverted plasma cutting power supply, this paper puts forward a nonlinear control method. This method integrates fuzzy control technology into the controller of power supply, thereby optimizing dynamic characteristics of power supply. The SIMULINK simulation technology is also used. To compare steady-state precision, robustness, response speed and other control indexes between fuzzy control and conventional PI control, the comparative simulation experiments were made respectively under constant non-disturbance steady-state condition, aperiodic load disturbance condition, and periodic load disturbance condition. The simulation results show that power supply with fuzzy controller has perfect steady robustness, fast system response and strong harmonic suppression ability. The simulation model is accurate and reliable, and it can be an efficient tool for further studying mechanism and algorithm optimization of plasma cutting power supply.

2013 ◽  
Vol 401-403 ◽  
pp. 1010-1013
Author(s):  
Jing Ling ◽  
Jin Che ◽  
Da Ming Liu

Temperature control system of infrared heating oven in moisture analyzer is characteristic of nonlinear, time-varying and time-lag. A composite fuzzy control (CFC) method is proposed, which combines improved Bang-Bang control with two-stage intelligent fuzzy control. The control algorithm is implemented by MSP430F5438. When the temperature error e between the desired temperature and actual temperature in heating oven is larger than threshold value, the improved Bang-Bang controller is employed in rapidly reducing the error; to decrease the system overshoot, the basic fuzzy controller is used; to reduce the steady-state error of basic fuzzy controller, the auxiliary fuzzy controller is applied. The steady-state error of improved fuzzy controller for oven temperature is less than 0.5°C, which is better than the Chinese National Standards for moisture content measurement.


2011 ◽  
Vol 128-129 ◽  
pp. 1050-1053 ◽  
Author(s):  
Ding Ye ◽  
Wei Jin ◽  
De Cai Li

As for shortcomings of PID and modern control method in crane anti-swing system, we introduce the fuzzy theory to the crane anti-swing on base of analyzing the crane trolley’s moving dynamic model. The cooperation between the position fuzzy controller and swing fuzzy controller achieve the goal. We use the fuzzy control system of self-adjustable quantization factors and scale factors to solve the problem that have the oscillation in limit areas causing the load lasting swing during the trolley moving position control. According to the simulation, it can solve the problem and eliminate the steady-state error completely and improve enhance the adaptivity of system. It can make the trolley reach the designation in 15s and keep the load steady.


2014 ◽  
Vol 556-562 ◽  
pp. 1472-1475 ◽  
Author(s):  
Bing Dong ◽  
Yan Tao Tian ◽  
Chang Jiu Zhou

This thesis puts forward one optimal adaptive fuzzy control method based on the pure electric vehicle energy management system of the fuzzy control which has been founded already. By adding an optimizing researching model based on the conventional fuzzy control strategy, the thesis can pick up the valuable control rules based on the dynamic programming theory and also can adjust the parameter of the fuzzy controller automatically according to the system operating. These can make the sum of the energy loss reduce to the min. The experiment points out that this method makes the vehicle possess good economic performance in the same driving cycle.


Author(s):  
Xinyan Ou ◽  
Jorge Arinez ◽  
Qing Chang ◽  
Guoxian Xiao

In the last decade, global competition has forced manufacturers to optimize logistics. The implementation of collapsible containers provides a new perspective for logistics cost savings, since using collapsible containers reduces the frequency of shipping freight. However, optimization of logistic cost is complicated due to the interactions in a system, such as market demand, inventory, production throughput, and uncertainty. Therefore, a systematic model and accurate estimation of the total cost and system performance are of great importance for decision making. In this paper, a mathematical model is developed to describe deterministic and stochastic scenarios for a closed-loop container dynamic flow system. The uncertainties in a factory and a supplier are considered in the model. The performance evaluation of the collapsible container system and total cost estimation are provided through model analysis. Furthermore, fuzzy control method is proposed to monitor the processing rate of the supplier and the factory and to adjust the rate of the supplier operation then further reduce the logistic cost. A case study with a matlab simulation is presented to illustrate the accuracy of the mathematical model and the effectiveness of the fuzzy controller.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Xiliang Ma ◽  
Ruiqing Mao

Cold storage refrigeration systems possess the characteristics of multiple input and output and strong coupling, which brings challenges to the optimize control. To reduce the adverse effects of the coupling and improve the overall control performance of cold storage refrigeration systems, a control strategy with dynamic coupling compensation was studied. First, dynamic model of a cold storage refrigeration system was established based on the requirements of the control system. At the same time, the coupling between the components was studied. Second, to reduce the adverse effects of the coupling, a fuzzy controller with dynamic coupling compensation was designed. As for the fuzzy controller, a self-tuning fuzzy controller was served as the primary controller, and an adaptive neural network was adopted to compensate the dynamic coupling. Finally, the proposed control strategy was employed to the cold storage refrigeration system, and simulations were carried out in the condition of start-up, variable load, and variable degree of superheat, respectively. The simulation results verify the effectiveness of the fuzzy control method with dynamic coupling compensation.


2010 ◽  
Vol 159 ◽  
pp. 644-649
Author(s):  
Jing Hua Zhao ◽  
Wen Bo Zhang ◽  
He Hao

Based on the analysis of performance of vehicle and its suspension, half vehicle model of five DOF and road model were built and the dynamic equations of half vehicle were derived according to the parameters of a commercial vehicle. In addition, a novel fuzzy logic control system based on semi-active suspension was introduced to achieve the optimal vibration characteristic, with changing the adjustable dampers according to dynamic vertical body acceleration signal. The fuzzy control was designed based on non-reference model method that acceleration value was sent to the fuzzy controller directly. And then, simulation analysis of semi-active suspension with fuzzy control method were implemented on the B-class road surface. The results showed that the semi-active suspension control system introduced in this paper has better performance on vieicle vibration characteristic, compared to passive suspension.


2015 ◽  
Vol 63 (4) ◽  
pp. 887-896 ◽  
Author(s):  
D. Qian ◽  
S. Tong ◽  
B. Yang ◽  
S. Lee

Abstract Overhead cranes are extensively employed but their performance suffers from the natural sway of payloads. Sometime, the sway exhibits double-pendulum motions. To suppress the motions, this paper investigates the design of simultaneous input-shaping-based fuzzy control for double-pendulum-type overhead cranes. The fuzzy control method is based on the single input-rule modules (SIRMs). Provided the all the system variables are measurable, the SIRMs fuzzy controller is designed at first. To improve the performance of the fuzzy controller, the simultaneous input shaper is adopted to shape the control command generated by the fuzzy controller. Compared with other two control methods, i.e., the SIRMs fuzzy control and the convolved input-shaping-based SIRMs fuzzy control, simulation results illustrate the feasibility, validity and robustness of the presented control method for the anti-swing control problem of double-pendulum-type overhead cranes.


Sign in / Sign up

Export Citation Format

Share Document