Numerical Simulation of Interior Flow Field of a Variable Thrust Rocket Engine

2011 ◽  
Vol 186 ◽  
pp. 215-219 ◽  
Author(s):  
Chun Guo Yue ◽  
Xin Long Chang ◽  
Shu Jun Yang ◽  
You Hong Zhang

With the support of powerful calculation ability of computer and Fluent of CFD software, integrative simulation research of the variable thrust liquid propellant rocket engine was developed. Numerical simulation of interior flow field of a variable thrust rocket engine with flux-oriented injector was done. The distributions of pressure, temperature, molar fraction of product and flow mach numbers were attained. By the contrast of the calculation results, the effects of structure parameters and working condition etc. on total whole performance of variable thrust rocket engine were analyzed. The results also provided theoretic references for design and optimization of variable thrust rocket engine.

2012 ◽  
Vol 214 ◽  
pp. 102-107
Author(s):  
Xiao Hui He ◽  
Lei Gao ◽  
Hong Bing Liu ◽  
Zhi Gang Li

This paper has studied the partial cavitation of 2-D hydrofoil based on the theory of viscous flow. The numerical calculation sets forth from the complete N-S equation and adopts the two-equation turbulence model closed Reynolds equation. As the basic control equation, the cavitating flow adopts the Rayleigh plesset model and calculates the zero angle of attack. At the same time, it calculates the influences of different ship speeds on the hydrofoil partial cavitating flow and analyzes the flow field of the hydrofoil. In addition, it makes comparisons on the calculation results and the published test conclusions. The results have shown that the calculation method in this paper has relatively good calculation precise degree.


2019 ◽  
Vol 293 ◽  
pp. 01001
Author(s):  
Kan Zhou ◽  
Ge Huang ◽  
Bin Liu ◽  
Qi Hu

This paper uses CFD preprocessing software to build Van model and gridding it, then CFD software is used to simulation the outflow field of Van model, from which the distribution of pressure and velocity is obtained and the outflow field is analyzed. The calculation results indeed reflect the aerodynamic characteristics of the external flow field of the van, and the flow movement on the van surface is better simulated. In addition, the positions where the vortex motion is relatively severe are also found


2012 ◽  
Vol 468-471 ◽  
pp. 1749-1752
Author(s):  
Chun Yao Wang ◽  
Xue Nong Wang ◽  
Fa Chen ◽  
Yue Liu ◽  
Jiu Peng Chi ◽  
...  

This article uses the flow field numerical simulation technology, it does simulation research for the flow field of the whole pneumatic conveying cotton trunk, through studying different types of jet orifice of the conveying trunk of comb—type cotton picker, finding out the influence of jet orifice width on pressure and velocity field, further understanding flow field distribution characteristics of the internal pneumatic cotton conveyance system, and providing necessary basis for the machine.


2012 ◽  
Vol 455-456 ◽  
pp. 1002-1008 ◽  
Author(s):  
Yi Ming Xu ◽  
Shi Ming Xu

Numerical simulation is used for researching the transient characteristic and internal characteristic of the reactor coolant pump under station blackout accident. The simulation method has been presented by analyzing difference scheme for governing equations. The analytical model of reactor coolant pump flow field has been established by analyzing adequately the influence of varying rotation speed to the pump external characteristic. Finally, the pump internal flow characteristic is exposed.


2014 ◽  
Vol 997 ◽  
pp. 396-400
Author(s):  
Yu Guang Fan ◽  
Ting Wei

The method of computational fluid dynamics (CFD) is used to three-dimensional numerical simulation for the fluid flow process of ammonium persulfate crystallizer. By using standard model, this paper respectively simulated the flow field within the crystallizer in the impeller installation height of 1.2 m while stirring speed is of 60 r/min, 100 r/min and 200 r/min; and simulated the impact of the flow field inside the crystallizer when the stirring speed of 100 r/min and impeller installation height respectively is of 0.7 m, 1.2 m and 1.7 m. That calculation results show that: the velocity gradient is mainly concentrated in the area of internal draft tube and paddle around. With the increase of impeller speed, the flow velocity of the fluid within the crystallizer corresponding increases; and the energy also gradually decreases from mixing impeller to the settlement zone with the loss of the installation height, and the kinetic energy in the bottom of the crystallizer is reduced. Considering the energy and crystallization effect, selection of mixing speed of 100 r/min or so and installation height of about 1.2 m is more appropriate.


2014 ◽  
Vol 716-717 ◽  
pp. 780-784
Author(s):  
Shuo Li ◽  
Shu Cai Wang ◽  
Fang Cheng ◽  
Gao Bing Xia

The gas flow in the cold storage plays a very important role in the effect of cold storages of procambarus clarkii. Only the reasonable gas flow ensures the uniform temperature field.The paper uses the technique of computational fluid dynamics (CFD) to conduct the numerical simulation of the flow field and finds out the law of the distribution of the temperature field,on the basis of which the numerical simulation of non steady state of the freezing process of the frozen products is carried out.The experiments prove that the simulation results can better reflect the reality,and show that CFD tools can play an important role in the design and optimization of cold storages.


Sign in / Sign up

Export Citation Format

Share Document