Research on the Application of Expansion Ratio Analysis for Die-Face Optimal Design in Sheet Metal Forming

2011 ◽  
Vol 189-193 ◽  
pp. 2434-2437
Author(s):  
Lei Chen

In deep drawing process, the experimental approach to obtain proper die-face design is not only expensive, but also requires much time and effort. Numerical simulation of the die-face design using expansion ratio analysis (ERA) can provide an avenue for lowering the cost and increasing the speed of the design process. A finite-element model of four-node quadrangle element is developed based on static implicit method using the Finite Element Code Marc. By the use of the model, the die-face design of oil pan deep drawing process is simulated. The relationship between the ERA and the maximum thickness variation is obtained. The smaller the ERA, the smaller the maximum thickness variation can be acquired. The mission success rate of the forming process increases, too. All the simulation results show reasonable agreement with the experiment.

Author(s):  
Tushar Naik ◽  
Zhong Hu

The anisotropic nature of laminated composites creates a unique opportunity and also a great challenge for tailoring their behavior during the forming processes according to the design requirements. In this work, design and simulation of a deep drawing process for fiber-reinforced laminated composites were conducted by using finite element analysis. The effects of the fiber orientation and stacking order on the deep drawing process were investigated based on the basic understanding of forming process of the isotropic aluminum alloy (Al-1100) and laminated composite material (Grilon RVZ-15H nylon/glass). A three dimensional finite element model incorporating layered structural laminates with various fiber orientations was developed. The load-stroke relationship, changes in thickness, and stress-strain distribution were investigated and compared for both aluminum alloy and laminated composites of [0]12, [0/90]6 and [0/90/45/135]3, which can be employed for detailed design and process optimization.


2011 ◽  
Vol 88-89 ◽  
pp. 638-641 ◽  
Author(s):  
Lei Chen

Earing is often undesirable in the production of deep drawn containers because it results in a nonuniform cup height. A finite element model for earring analysis is developed considering only the flange area of the sheet. It was found that the draw-in depth of the flange increases with the increase of the r value, and it remains invariable when r value is larger than 2. With the increase of the r value, the max thickness decreases and the min thickness increases. If △r>0, four earings are formed. If △r =0, the material characteristics in all the planar directions are same. The flange uniformly flows into the die cavity, no earing is formed. If △r<0, four earings are formed. The earing distribution is dominated by r0, r45 and r90. Both r and △r have much effect on the earing distribution.


Author(s):  
KOPANATHI GOWTHAM ◽  
K.V.N.S. SRIKANTH ◽  
K.L.N. MURTY

This paper “SIMULATION OF THE EFFECT OF DIE RADIUS ON DRAWING PROCESS” is one of the most used Metal Forming Process within the industrial field. Different analytical, numerical, empirical and experimental methods have been developed in order to analyze it. This work reports on the initial stages of finite element analysis (FEA) of a Deep drawing process. The objective of this study is to determine the factors influencing a drawing process and analyzing the process by varying the Die radius and keeping the Friction, Punch radius and Blank Thickness as constant. In this paper Punches, blank thickness of same geometry and dies of various geometries were drawn by using CATIA software. And an effort is made to study the simulation effect of main process variant namely die radius using finite element analysis. As the FEM code, the commercially available software DEFORM-3D is used here. Aluminium alloy 6061 is used for deep drawing with initial diameter as 56mm.


2015 ◽  
Vol 639 ◽  
pp. 33-40 ◽  
Author(s):  
Lucian Lazarescu ◽  
Ioan Nicodim ◽  
Dorel Banabic

In the deep drawing process, the blank-holding force (BHF) is an important process parameter affecting the energy consumption and the successful production of parts. In the present work, both experiments and finite element simulations have been conducted to investigate the influence of constant and time variable BHF on drawing force (DF) and thickness distribution in the deep drawing process of cylindrical and square cups. A finite element model was developed in the AutoForm software and validated with experiments. The developed model has been used for the simulation of deep drawing process of AA6016-T4 aluminum alloy sheet. The experimental and numerical results show that, using a variable instead of a constant BHF, the DF can be decreased in the expense of wall thickening.


2015 ◽  
Vol 811 ◽  
pp. 92-96
Author(s):  
Ionela Iordan ◽  
Constantin Dogariu ◽  
Cristina Mohora

The paper presents some aspects regarding the sheet metal deep drawing process and shape optimzation for such parts using Finite Element Analysis. Simulation based design approaches have been used for forming processes. Using similar approach, a full process simulation and optimisation was undertaken in the present work. The work done here involved computer simulations of the forming processes to evaluate the amount of strain and stress each forming process contributed to the final product. Based on the simulation results, recommendation to change the product shape were presented. Not all the virtual products should be manufactured and the Finite Element Analysis eliminate all the possible errors and let the designers to optimize the geometry before designing the Molds and Dies for Deep Drawing process.


Author(s):  
Dietrich Bauer ◽  
Regine Krebs

Abstract For a deep drawing process some important controllable variables (factors) upon the maximum drawing force are analyzed to find a setting adjustment for these process factors that provides a very low force for the metal forming process. For this investigation an orthogonal array L18 with three-fold replication is used. To find the optimum of the process, the experimental results are analyzed in accordance with the robust-design-method according to Taguchi (Liesegang et. al., 1990). For this purpose, so-called Signal-to-Noise-ratios are calculated. The analysis of variance for this S/N-ratios leads to a mathematical model for the deep drawing process. This model allows to find the pressumed optimal settings of the investigated factors. In the following, a confirmation experiment is carried out by using these optimal settings. The maximum drawing force of the confirmation experiment does not correspond with the confidence interval, which was calculated by analysis of variance techniques. So the predicted optimum of the process does not lead to a metal forming process with very low deep drawing force. The comparison with a full factorial plan shows that there are interactions between the investigated factors. These interactions could not be discovered by the used orthogonal array. Thus the established mathematical model does not describe the relation between the factors and deep drawing force in accordance with the practical deep drawing conditions.


2020 ◽  
Vol 846 ◽  
pp. 117-121
Author(s):  
Min Sik Lee ◽  
Jun Park ◽  
J.S.Suresh Babu ◽  
Chung Gil Kang

In this paper, hot and cold deep drawing processes are determined with direct deep drawing process and indirect deep drawing process. To predict the friction coefficient, the finite-element method, which can predict deformation behavior until the fracture of a blank sheet, was proposed using the forming limit diagram (FLD) curve. The effect of fracturing of the coating layer on the friction coefficient during the hot and cold deep drawing processes was investigated. The deformation behavior of the coating layer of the boron steel sheet that affects the friction coefficient in the hot and cold deep drawing processes was also proposed. A forming method that can control the surface condition of the formed product is further proposed by explaining the fracture of the coating due to the forming process.


Sign in / Sign up

Export Citation Format

Share Document