Influences of Annealing and Deformation on the High Temperature Internal Friction Spectra of Al-0.013%Wt Ce Alloy

2011 ◽  
Vol 197-198 ◽  
pp. 1573-1576
Author(s):  
Xiao Hui Cao ◽  
Shou Jing Wang

By using a low frequency inverted torsion pendulum, the high temperature internal friction spectra of Al-0.013wt%Ce alloy subjected to deformation at different tensile rates was measured, and three peaks, the conventional grain boundary peak (P1), the bamboo peak (P2) and the soild solution peak (P3) were found. Increases of annealing temperature and deformation rate make P1 and P2 lower with P1 shifting to higher temperature and P2 to lower temperature. P3 was only found in the as-received samples. The dependence of P1 and P2 on grain size indicates that the two peaks are originated from the grain boundary sliding, and P3 may be associated with the diffusion of Ce atoms or other impurities at grain boundaries.

2012 ◽  
Vol 535-537 ◽  
pp. 1027-1030
Author(s):  
Xiao Hui Cao ◽  
Yu Wang

By using a low frequency inverted torsion pendulum, the high temperature internal friction spectra of Al-0.02wt%Zr and Al-0.1wt%Zr alloys were investigated respectively. In Al-0.02wt%Zr alloy, the conventional grain boundary internal friction peak (Pg) is observed with some small unstable peaks. In Al-0.1wt%Zr alloy, the bamboo peak is observed to appear at the high temperature side of the conventional grain boundary internal friction peak. The conventional grain boundary internal friction peak decreased and moved to higher temperature. The bamboo peak owns an activation energy of 1.75eV. When average grain size exceeded the diameter of samples, Pb strength was reduced and its position was shifted to a lower temperature. Based on the grain boundary sliding model, Pg and Pb peaks were explained. Their dependence on annealing temperature and time was determined by considering the effects of contained Ce atoms and other impurities on the relaxation across grain boundary.


1983 ◽  
Vol 44 (C9) ◽  
pp. C9-759-C9-764
Author(s):  
E. Bonetti ◽  
A. Cavallini ◽  
E. Evangelista ◽  
P. Gondi

2014 ◽  
Vol 452 (1-3) ◽  
pp. 628-632 ◽  
Author(s):  
Yoshito Sugino ◽  
Shigeharu Ukai ◽  
Bin Leng ◽  
Naoko Oono ◽  
Shigenari Hayashi ◽  
...  

2004 ◽  
Vol 52 (8) ◽  
pp. 2349-2357 ◽  
Author(s):  
Hidehiro Yoshida ◽  
Kenji Yokoyama ◽  
Naoya Shibata ◽  
Yuichi Ikuhara ◽  
Taketo Sakuma

2012 ◽  
Vol 735 ◽  
pp. 67-72
Author(s):  
Kunio Funami ◽  
Daisuke Yamashita ◽  
Kohji Suzuki ◽  
Masafumi Noda

Abstract. This study examined the critical plastic formability limit of a fine-structure AZ31 magnesium alloy plate under warm and high temperature based on the strength of a magnesium alloy that has cavities at room temperature. The cyclic hot free-forging process as pre-form working following rolling at a light reduction ratio fabricated a fine-structure AZ31 magnesium alloy plate. The appearance of the cavities was examined in detail together with changes in the structure and preparation methods before further damage at high temperatures with increasing uni-and biaxial plastic deformation. The allowable deformation limit in the super plasticity process can be estimated from the strength of the deformed material and forming limit diagram (FLD) at room temperature. During high-temperature deformation, cavities are produced by stress concentrations at grain boundary triple points and striation bands due to grain boundary sliding. The cavitations growth behavior is dependent upon deformation conditions, and a high percentage of large cavities occupy the sample surface as a large amount of grain boundary sliding is present, i.e., as uniform elongation grows larger, the cavity size also increases. In a case where 200% uniaxial strain was applied to a fine-grained structure material at a temperature of 623K under a strain rate of 10-4s-1, the tensile strength at room temperature decreased about 13%, and elongation was 10% less, compared with that of a material to which no load was applied due to the influence of cavities. In a case of biaxial deformation, the values were 28% lower. It is possible to draw a FLD based on the cavity incidence fraction .


Author(s):  
K.J. Hollis ◽  
D.P. Butt ◽  
R.G. Castro

Abstract The use of MoSi2 as a high temperature oxidation resistant structural material is hindered by its poor elevated temperature creep resistance. The addition of second phase Si3N4 holds promise for improving the creep properties of MoSi2 without decreasing oxidation resistance. The high temperature impression creep behavior of atmospheric plasma sprayed (APS) and hot pressed (HP) MoSi2/Si3N4 composites was investigated. Values for steady state creep rates, creep activation energies, and creep stress exponents were measured. Grain boundary sliding and splat sliding were found to be the dominant creep mechanisms for the APS samples while grain boundary sliding and plastic deformation were found to be the dominant creep mechanisms for the HP samples.


Sign in / Sign up

Export Citation Format

Share Document