Dynamic Analysis of Communication Cabinet Structure Design

2011 ◽  
Vol 199-200 ◽  
pp. 1113-1117
Author(s):  
Ning Ou Yang ◽  
Ying Liang ◽  
Chun Yue Huang ◽  
He Geng Wei

Two communication cabinet finite element analysis(FEA) models with different cross-sectional structure vertical columns were set up. Based on the two communication cabinet FEA models, modal analysis was carried out by using the subspace method; the first 6 order natural frequencies and vibration modes were obtained. Harmonic response analysis was also carried out; the displacement response of the communication cabinet structure under external loading was determined. The dynamic performance comparison of the two communication cabinets with different cross-sectional structure vertical columns was performed, as a result, an effective method is provided for communication cabinet dynamic characteristic optimized design.

2011 ◽  
Vol 194-196 ◽  
pp. 1977-1981
Author(s):  
Dong Qiang Gao ◽  
Zhi Yun Mao ◽  
Zhong Yan Li ◽  
Fei Zhang

The modal analysis and harmonic response analysis of the machine tool table with periodic truss-core structures are analyzed and calculated by finite element analysis software-ANSYS Workbench, then we get the finite element analysis results. After comparing the results with finite element analysis results of the original machine tool table, we come to the conclusion that the dynamic properties of the machine tool table with periodic truss-core structures are better than the original machine tool table’s. It makes a base for optimized design and remanufacturing.


2012 ◽  
Vol 605-607 ◽  
pp. 1519-1522
Author(s):  
Lei Sun ◽  
Xia Wang

The modal analysis and harmonic response analysis of milling head box were done by means of finite element method. Find out its characteristics of vibration modal. The analysis is conducive to the design of the milling head box of machine tool. It makes a base for optimized design and remanufacturing.


2011 ◽  
Vol 337 ◽  
pp. 713-716
Author(s):  
Lei Sun ◽  
Ming Hai Wang ◽  
Xiao Peng Li ◽  
Yue Sun

Taking machine tool bed as example,the modal analysis and harmonic response analysis were done by means of finite element method. Find out its characteristics of vibration modal. The analysis is conducive to the design of the machine tool bed. It makes a base for optimized design and remanufacturing.


2011 ◽  
Vol 361-363 ◽  
pp. 1553-1556
Author(s):  
Lei Sun ◽  
Ming Hai Wang ◽  
Xiao Peng Li ◽  
Yue Sun

Taking moving trestle of machine tool as example,the modal analysis and harmonic response analysis were done by means of finite element method. Find out its characteristics of vibration modal. The analysis is conducive to the design of the moving trestle of machine tool. It makes a base for optimized design and remanufacturing.


2012 ◽  
Vol 487 ◽  
pp. 203-207
Author(s):  
Gong Xue Zhang ◽  
Xiao Kai Shen

Purpose, with the application of workbench finite element analysis software, get the analysis results of DVG 850 high-speed vertical machining center via the modal analysis and harmonic response analysis. Use the calculation results for reference, put forward the improved method, and prove the credibility of the simulation analysis by testing DVG 850 prototype.


2013 ◽  
Vol 281 ◽  
pp. 165-169 ◽  
Author(s):  
Xiang Lei Zhang ◽  
Bin Yao ◽  
Wen Chang Zhao ◽  
Ou Yang Kun ◽  
Bo Shi Yao

Establish the finite element model for high precision grinding machine which takes joint surface into consideration and then carrys out the static and dynamic analysis of the grinder. After the static analysis, modal analysis and harmonic response analysis, the displacement deformation, stress, natural frequency and vibration mode could be found, which also helps find the weak links out. The improvement scheme which aims to increase the stiffness and precision of the whole machine has proposed to efficiently optimize the grinder. And the first natural frequency of the optimized grinder has increased by 68.19%.


2012 ◽  
Vol 605-607 ◽  
pp. 1515-1518
Author(s):  
Wei Cong ◽  
Zhi Yong Zhang ◽  
Jiang Li ◽  
En Xiang Han

Taking the spindle of machine tool as example,the modal analysis and harmonic response analysis were done by means of finite element method. Find out its characteristics of vibration modal. The analysis is conducive to the design of the spindle of machine tool. It makes a base for optimized design and remanufacturing.


2012 ◽  
Vol 201-202 ◽  
pp. 907-911 ◽  
Author(s):  
Feng Yi Feng ◽  
Yu Guo Cui ◽  
Fei Xue ◽  
Liang En Wu

Based on the requirements of that the finger can move in parallel, and the displacement of the finger can be detected, the micro-gripper driven by piezoelectric actuator is designed based on the displacement amplification structure with the flexure hinge. The static analysis, the modal analysis, the harmonic response analysis and the transient response analysis of the micro-gripper are carried out by using the finite element analysis software ANSYS. The results of the finite element analysis show that the finger is fully able to move in parallel, and can detect the displacement of the finger; the maximum displacement of the finger is about 101 μm, the first natural frequency is about 130 Hz; the finger tip displacement under the 1 μm step input is about 20 μm, the fingertip vibration is about ±2 μm.


2014 ◽  
Vol 633-634 ◽  
pp. 1289-1293
Author(s):  
Hong Bing Zhao ◽  
Xue Hong Shen

The tool’s unique movement trajectory in longitudinal and torsional ultrasonic machining technology can help chip extraction. Cutting liquid can offer good lubrication, cleaning and cooling. It also can prolong tool’s life, improve the processing quality and processing efficiency, so it is widely used in precision and ultra-precision machining. It builds the model of ultrasonic vibration system, based on the motion analysis of longitudinal and torsional ultrasonic vibration honing. In addition, mode analysis, transient dynamic analysis and harmonic response analysis are carried out by means of finite element analysis software ANSYS. Using graphics and curve in the postprocessing module describe the results of numerical simulation. It can provide powerful model and theoretical basis for the structure design and performance optimization of ultrasonic vibration system, which is used for longitudinal and torsional ultrasonic vibration honing.


2015 ◽  
Vol 9 (1) ◽  
pp. 150-155 ◽  
Author(s):  
Ling Liu

In this paper, the CNC machine spindle after remanufacturing is researched as an object on uncertain constraints. At first, the equations of the machine spindle motion based on beam theory are established. This article uses Finite Element Analysis (FEA) function to analyze the remanufacturing of machine spindle system in the free mode and while static and the actual working conditions of multi-modal analysis of the spindle’s constraints state. By analysis it is known that the spindle vibrates and deforms at high speeds, and some assumptions are used to improve the unreasonable parameters, so that the spindle’s dynamic performance is more stable and reliable in the conditions of the high speed and heavy load operation. In addition, simplifying the cost and shortening the design cycle are the part of the analysis. The results provides an optimized design and a basis for precision control for the heavy-duty mechanical spindle system or machine spindle system.


Sign in / Sign up

Export Citation Format

Share Document