Innovation Synthesis of Basic Configurationof Epicyclic Gear Trains with Three-Degrees of Freedom

2011 ◽  
Vol 199-200 ◽  
pp. 358-364
Author(s):  
Heng Bin Ren ◽  
Mao Lin Huang

Epicyclical gear trains with three-degrees of freedom have found its wide application as the development of new technique. Currently, nearly all domestic researches on epicyclical gear trains with three or more degrees of freedom are aimed at the practical application, and scare works systematically investigate basic configuration and synthesis of the train system. An innovation synthesis method is proposed based on the compound joint kinematic chain and the substitution of low pair with high pair for epicyclical gear trains with three-degrees of freedom, and the possible independent basic configurations of epicyclical gear trains with three-degrees of freedom are obtained by applying the proposed method and the utilization of the method is also discussed. The method provides not only a new approach for innovation synthesis of epicyclical gear trains but also a few basic configurations of epicyclical gear trains with three-degrees of freedom for practice design.

Author(s):  
Cheng-Ho Hsu

Abstract This paper presents a systematic approach, which is based on the concept of generalization for the structural synthesis of geared kinematic chains for epicyclic gear trains with any number of degrees of freedom. First, the fundamental rules of generalized kinematic chains for nonfractionated epicyclic gear trains are investigated. Next, according to the numbers of gear pairs and degrees of freedom, acceptable kinematic chains for nonfractionated epicyclic gear trains are identified from an atlas of basic kinematic chains. Then, each acceptable kinematic chain is specialized to be epicyclic gear trains. Finally, geared kinematic chains for nonfractionated epicyclic gear trains with up to three degrees of freedom and four gear pairs have been susscessfully constructed.


Author(s):  
Sridhar Kota ◽  
Srinivas Bidare

Abstract A two-degree-of-freedom differential system has been known for a long time and is widely used in automotive drive systems. Although higher degree-of-freedom differential systems have been developed in the past based on the well-known standard differential, the number of degrees-of-freedom has been severely restricted to 2n. Using a standard differential mechanism and simple epicyclic gear trains as differential building blocks, we have developed novel whiffletree-like differential systems that can provide n-degrees of freedom, where n is any integer greater than two. Symbolic notation for representing these novel differentials is also presented. This paper presents a systematic method of deriving multi-degree-of-freedom differential systems, a three and four output differential systems and some of their practical applications.


2013 ◽  
Vol 457-458 ◽  
pp. 707-712
Author(s):  
Pei Wen An ◽  
Zhong Liang Lv

Epicyclic gear trains have been broadly applied in engineering practice. In this paper, kinematic chains (K.C.) with single-joint (S.J.) were applied to innovative synthesis of the epicyclic gear trains. The method of the innovative synthesis of the epicyclic gear trains was presented. Not only the epicyclic gear trains in common uses were obtained, but some new types of epicyclic gear trains that are got difficultly by means of conventional combination method were gained. Thereby, a new way has been offered for the innovative synthesis of the epicyclic gear trains, at the same time, a way has also been offered for practical application of some multi-link kinematic chains gained by using the theory of type-number synthesis of the K.C. with S.J.. Examples show that the method presented in this paper is right and feasible, and the method is efficient and practical for the innovative synthesis of the epicyclic gear trains.


2008 ◽  
Vol 130 (5) ◽  
Author(s):  
Y. V. D. Rao ◽  
A. C. Rao

New planetary gear trains (PGTs) are generated using graph theory. A geared kinematic chain is converted to a graph and a graph in turn is algebraically represented by a vertex-vertex adjacency matrix. Checking for isomorphism needs to be an integral part of the enumeration process of PGTs. Hamming matrix is written from the adjacency matrix, using a set of rules, which is adequate to detect isomorphism in PGTs. The present work presents the twin objectives of testing for isomorphism and compactness using the Hamming matrices and moment matrices.


2016 ◽  
Vol 40 (4) ◽  
pp. 597-606
Author(s):  
Yi-Chang Wu ◽  
Li-An Chen

A multi-speed bicycle transmission hub includes a geared speed-changing mechanism for providing different speed ratios and a gear-shifting mechanism for controlling the gear stage. This paper focuses on the embodiment design of a mechanical gear-shifting mechanism with a rotary configuration used in a 16-speed transmission hub for bicycles. A 16-link, five-degrees of freedom (DOF) split-power epicyclic gear mechanism, which consists of a gear differential and four sets of parallel-connected basic planetary gear trains, is introduced. Based on the clutching sequence table, a systematic design process is developed to come up with the embodiment design of the gear-shifting mechanism. A feasible and compact 16-speed rear transmission hub for bicycles is presented.


2016 ◽  
Vol 8 (2) ◽  
Author(s):  
P. C. López-Custodio ◽  
J. M. Rico ◽  
J. J. Cervantes-Sánchez ◽  
G. I. Pérez-Soto

The method of intersection of surfaces generated by kinematic dyads is applied to obtain mechanisms that are able to shift from one mode of motion to another. Then a mobility analysis shows that the singularities of the generated surfaces can be used to obtain mechanisms which can change their number of degrees-of-freedom depending on its configuration. The generator dyads are connected as usually done by a spherical pair. However, in the cases shown in this contribution the three-degrees-of-freedom of the spherical pair are not all necessary to keep the kinematic chain closed and movable, and the spherical pair can be substituted by either a pair of intersecting revolute joints or a single revolute joint. This substitution can be obtained by means of two methods presented in this contribution.


Author(s):  
Man Bok Hong ◽  
Yong Je Choi

In this article, a novel method for the systematic design of a planar three-degrees-of-freedom compliance device with desired compliance characteristics is presented. For the realization of desired compliance, the synthesis method of stiffness of a planar mechanism is first derived. The compliance device may be directly realized by means of parallel connections of the synthesized springs. However, the use of several mechanical elements such as joints and guides for spring assemblies for the realization may cause significant complexity in manufacturing the compliance device with high precision and in compact size. In order to resolve the problem, the form of serial connections of three torsional springs which has the same compliance as the form of parallel connections of the synthesized line springs is proposed. The serial form of torsional springs can be physically realized by designing proper shape of the circular flexure hinge corresponding to each of the torsional springs. For the illustration of the proposed design method, a planar serial compliance device with high compliance to the normal contact force is designed and verified by finite element method analysis.


2006 ◽  
Vol 128 (6) ◽  
pp. 1307-1314 ◽  
Author(s):  
Ilie Talpasanu ◽  
T. C. Yih ◽  
P. A. Simionescu

A novel method for kinematic analysis of parallel-axes epicyclic gear trains is presented, called the incidence and transfer method, which uses the incidence matrices associated with the edge-oriented graph associated to the mechanism and the transfer joints (teeth contact joints). Relative to such joints, a set of independent equations can be generated for calculating the angular positions, velocities, and accelerations. Complete kinematic equations are obtained in matrix form using a base of circuits from a cycle matroid. The analysis uses the relationships between the number of mobile links, number of joints, and number of circuits in the base of circuits, together with the Latin matrix (whose entries are function of the absolute values of the partial gear ratios of the transmission). Calculating the rank of the Latin matrix can identify singularities, like groups of gears that rotate as a whole. Relationships between the output and input angular velocities and accelerations are then determined in a matrix-based approach without using any derivative operations. The proposed method has general applicability and can be employed for systems with any number of gears and degrees of freedom, as illustrated by the numerical examples presented.


Sign in / Sign up

Export Citation Format

Share Document