Bacterial Oxidation of Elemental Sulfur: Changes in Oxidation Kinetics

2007 ◽  
Vol 20-21 ◽  
pp. 477-480
Author(s):  
Martin Mandl ◽  
Blanka Pokorna ◽  
Pavla Gavlasova

We investigated the oxidation of elemental sulfur in resting cells of Acidithiobacillus ferrooxidans in order to optimize the substrate for sulfur oxidation and to explore oxidation kinetics. We showed that although pH and temperature had no significant effect on the apparent Michaelis constant, cell concentration increased it.

2007 ◽  
Vol 73 (11) ◽  
pp. 3752-3754 ◽  
Author(s):  
Blanka Pokorna ◽  
Martin Mandl ◽  
Sarka Borilova ◽  
Pavla Ceskova ◽  
Romana Markova ◽  
...  

ABSTRACT Wide ranges of growth yields on sulfur (from 2.4 × 1010 to 8.1 × 1011 cells g−1) and maximum sulfur oxidation rates (from 0.068 to 1.30 mmol liter−1 h−1) of an Acidithiobacillus ferrooxidans strain (CCM 4253) were observed in 73 batch cultures. No significant correlation between the constants was observed. Changes of the Michaelis constant for sulfur (from 0.46 to 15.5 mM) in resting cells were also noted.


2007 ◽  
Vol 20-21 ◽  
pp. 584-584 ◽  
Author(s):  
Daniel Kupka ◽  
Mark Dopson ◽  
Olli H. Tuovinen

The purpose of this work was to characterize elemental sulfur oxidation by a psychrotrophic Acidithiobacillus ferrooxidans culture that originated from an AMD-impacted surface soil in a permafrost area in northern Siberia. In this work, the iron-oxidizing culture was cultivated with elemental sulfur with and without Fe2+ or Fe3+ in flasks on a shaker to avoid oxygen limitation.


2015 ◽  
Vol 1130 ◽  
pp. 97-100 ◽  
Author(s):  
Jiri Kucera ◽  
Eva Pakostova ◽  
Oldrich Janiczek ◽  
Martin Mandl

Ferric iron may act as a thermodynamically favourable electron acceptor during elemental sulfur oxidation byAcidithiobacillus ferrooxidansin extremely acidic anoxic environments. A loss of anaerobic ferric iron reduction ability has been observed in ferrous iron-grownA. ferrooxidansCCM 4253 after aerobic passaging on elemental sulfur. In this study, iron-oxidising cells aerobically adapted from ferrous iron to elemental sulfur were still able to anaerobically reduce ferric iron, however, following aerobic passage on elemental sulfur it could not. Preliminary quantitative proteomic analysis of whole cell lysates of the passage that lost anaerobic ferric iron-reducing activity resulted in 150 repressed protein spots in comparison with the antecedent culture, which retained the activity. Identification of selected protein spots by tandem mass spectrometry revealed physiologically important proteins including rusticyanin and outer-membrane cytochrome Cyc2, which are involved in iron oxidation. Other proteins were associated with sulfur metabolism such as sulfide-quinone reductase and proteins encoded by the thiosulfate dehydrogenase and heterodisulfide reductase complex operons. Furthermore, proteomic analysis identified proteins directly related to anaerobiosis. The results indicate the importance of iron-oxidising system components for anaerobic sulfur oxidation in the studied microbial strain.


2020 ◽  
Vol 8 (3) ◽  
pp. 386 ◽  
Author(s):  
Maxim Muravyov ◽  
Anna Panyushkina

A two-step process, which involved ferric leaching with biologically generated solution and subsequent biooxidation with the microbial community, has been previously proposed for the processing of low-grade zinc sulfide concentrates. In this study, we carried out the process of complete biological oxidation of the product of ferric leaching of the zinc concentrate, which contained 9% of sphalerite, 5% of chalcopyrite, and 29.7% of elemental sulfur. After 21 days of biooxidation at 40 °C, sphalerite and chalcopyrite oxidation reached 99 and 69%, respectively, while the level of elemental sulfur oxidation was 97%. The biooxidation residue could be considered a waste product that is inert under aerobic conditions. The results of this study showed that zinc sulfide concentrate processing using a two-step treatment is efficient and promising. The microbial community, which developed during biooxidation, was dominated by Acidithiobacillus caldus, Leptospirillum ferriphilum, Ferroplasma acidiphilum, Sulfobacillus thermotolerans, S. thermosulfidooxidans, and Cuniculiplasma sp. At the same time, F. acidiphilum and A. caldus played crucial roles in the oxidation of sulfide minerals and elemental sulfur, respectively. The addition of L. ferriphilum to A. caldus during biooxidation of the ferric leach product proved to inhibit elemental sulfur oxidation.


2016 ◽  
Vol 167 (5) ◽  
pp. 357-366 ◽  
Author(s):  
Jiri Kucera ◽  
Eva Pakostova ◽  
Jan Lochman ◽  
Oldrich Janiczek ◽  
Martin Mandl

2019 ◽  
Vol 14 (2) ◽  
pp. 623-634 ◽  
Author(s):  
Hubert Müller ◽  
Sviatlana Marozava ◽  
Alexander J. Probst ◽  
Rainer U. Meckenstock

AbstractCable bacteria of the family Desulfobulbaceae couple spatially separated sulfur oxidation and oxygen or nitrate reduction by long-distance electron transfer, which can constitute the dominant sulfur oxidation process in shallow sediments. However, it remains unknown how cells in the anoxic part of the centimeter-long filaments conserve energy. We found 16S rRNA gene sequences similar to groundwater cable bacteria in a 1-methylnaphthalene-degrading culture (1MN). Cultivation with elemental sulfur and thiosulfate with ferrihydrite or nitrate as electron acceptors resulted in a first cable bacteria enrichment culture dominated >90% by 16S rRNA sequences belonging to the Desulfobulbaceae. Desulfobulbaceae-specific fluorescence in situ hybridization (FISH) unveiled single cells and filaments of up to several hundred micrometers length to belong to the same species. The Desulfobulbaceae filaments also showed the distinctive cable bacteria morphology with their continuous ridge pattern as revealed by atomic force microscopy. The cable bacteria grew with nitrate as electron acceptor and elemental sulfur and thiosulfate as electron donor, but also by sulfur disproportionation when Fe(Cl)2 or Fe(OH)3 were present as sulfide scavengers. Metabolic reconstruction based on the first nearly complete genome of groundwater cable bacteria revealed the potential for sulfur disproportionation and a chemo-litho-autotrophic metabolism. The presence of different types of hydrogenases in the genome suggests that they can utilize hydrogen as alternative electron donor. Our results imply that cable bacteria not only use sulfide oxidation coupled to oxygen or nitrate reduction by LDET for energy conservation, but sulfur disproportionation might constitute the energy metabolism for cells in large parts of the cable bacterial filaments.


Sign in / Sign up

Export Citation Format

Share Document