scholarly journals Kinetic Constant Variability in Bacterial Oxidation of Elemental Sulfur

2007 ◽  
Vol 73 (11) ◽  
pp. 3752-3754 ◽  
Author(s):  
Blanka Pokorna ◽  
Martin Mandl ◽  
Sarka Borilova ◽  
Pavla Ceskova ◽  
Romana Markova ◽  
...  

ABSTRACT Wide ranges of growth yields on sulfur (from 2.4 × 1010 to 8.1 × 1011 cells g−1) and maximum sulfur oxidation rates (from 0.068 to 1.30 mmol liter−1 h−1) of an Acidithiobacillus ferrooxidans strain (CCM 4253) were observed in 73 batch cultures. No significant correlation between the constants was observed. Changes of the Michaelis constant for sulfur (from 0.46 to 15.5 mM) in resting cells were also noted.

2007 ◽  
Vol 20-21 ◽  
pp. 477-480
Author(s):  
Martin Mandl ◽  
Blanka Pokorna ◽  
Pavla Gavlasova

We investigated the oxidation of elemental sulfur in resting cells of Acidithiobacillus ferrooxidans in order to optimize the substrate for sulfur oxidation and to explore oxidation kinetics. We showed that although pH and temperature had no significant effect on the apparent Michaelis constant, cell concentration increased it.


1997 ◽  
Vol 48 (4) ◽  
pp. 497 ◽  
Author(s):  
Sholeh ◽  
Rod D. B. Lefroy ◽  
Graeme J. Blair

Elemental sulfur (S) has many attractions as a fertiliser but it must be oxidised to sulfate before it is plant available. Two laboratory incubation experiments with a high S sorbing basaltic soil (Haplohumult) from Walcha, New South Wales, are reported here. The first experiment was conducted to study the effect of ? P and other nutrients on the oxidation of elemental S and the growth of Thiobacillus thiooxidans. The second experiment studied the effect of phosphorus (P) rate, elemental S particle size, and elemental S form on the oxidation of elemental S at different times. There were significant differences between treatments in the percentage and amount of elemental S oxidised, with the lowest oxidation occurring during the 6-week incubation in the P treatment, which represented 1�8% of the applied S compared with 16�0% when all nutrients were supplied. There was a significant linear relationship between T. thiooxidans population at the end of the incubation period and the amount of elemental S oxidised. The oxidation of elemental S was higher when fine (50?150 �m) particle size elemental S was used, compared with coarse (150?250 �m) elemental S. There was no clear difference in oxidation rate between ground and recrystallised elemental S. The S oxidation rates recorded in these experiments were compared with those predicted by an S oxidation model and found to be in close agreement.


1990 ◽  
Vol 70 (3) ◽  
pp. 499-502 ◽  
Author(s):  
H. H. JANZEN

Controlled environment studies were conducted to characterize the effects of cropping treatment and degree of particle dispersion on S oxidation rate. In two soils (a Chernozem and a Luvisol), S oxidation rates were not greatly affected by cropping treatment (barley, beans, canola, or fallow). In a second experiment, S oxidation was shown to approach maximum rates at a dispersion level of 1000 g soil g−1 S. Key words: Sulfur, placement, rhizosphere, fertilizer, elementals


2007 ◽  
Vol 20-21 ◽  
pp. 584-584 ◽  
Author(s):  
Daniel Kupka ◽  
Mark Dopson ◽  
Olli H. Tuovinen

The purpose of this work was to characterize elemental sulfur oxidation by a psychrotrophic Acidithiobacillus ferrooxidans culture that originated from an AMD-impacted surface soil in a permafrost area in northern Siberia. In this work, the iron-oxidizing culture was cultivated with elemental sulfur with and without Fe2+ or Fe3+ in flasks on a shaker to avoid oxygen limitation.


2015 ◽  
Vol 1130 ◽  
pp. 97-100 ◽  
Author(s):  
Jiri Kucera ◽  
Eva Pakostova ◽  
Oldrich Janiczek ◽  
Martin Mandl

Ferric iron may act as a thermodynamically favourable electron acceptor during elemental sulfur oxidation byAcidithiobacillus ferrooxidansin extremely acidic anoxic environments. A loss of anaerobic ferric iron reduction ability has been observed in ferrous iron-grownA. ferrooxidansCCM 4253 after aerobic passaging on elemental sulfur. In this study, iron-oxidising cells aerobically adapted from ferrous iron to elemental sulfur were still able to anaerobically reduce ferric iron, however, following aerobic passage on elemental sulfur it could not. Preliminary quantitative proteomic analysis of whole cell lysates of the passage that lost anaerobic ferric iron-reducing activity resulted in 150 repressed protein spots in comparison with the antecedent culture, which retained the activity. Identification of selected protein spots by tandem mass spectrometry revealed physiologically important proteins including rusticyanin and outer-membrane cytochrome Cyc2, which are involved in iron oxidation. Other proteins were associated with sulfur metabolism such as sulfide-quinone reductase and proteins encoded by the thiosulfate dehydrogenase and heterodisulfide reductase complex operons. Furthermore, proteomic analysis identified proteins directly related to anaerobiosis. The results indicate the importance of iron-oxidising system components for anaerobic sulfur oxidation in the studied microbial strain.


1988 ◽  
Vol 68 (3) ◽  
pp. 475-483 ◽  
Author(s):  
J. R. LAWRENCE ◽  
V. V. S. R. GUPTA ◽  
J. J. GERMIDA

Effects of elemental sulfur fertilization on sulfur-oxidizing populations, rhodanese activity, total sulfur content and sulfur oxidation rates in the 0- to 15-cm zone of two Grey Luvisolic soils were assessed. Heterotrophic sulfur oxidizers were the most abundant sulfur oxidizers detected in both soils. Elemental sulfur fertilization caused an increase in populations of autotrophic thiosulfate-oxidizing micro-organisms, and a threefold increase in rhodanese and sulfur-oxidizing activity in a Waitville soil. In contrast, sulfur fertilization did not stimulate autotrophic thiosulfate oxidizers in a Loon River soil and the greatest increase in rhodanese and sulfur oxidation rates was only 31%. The response to sulfur application was biphasic however, and subsequent additions of sulfur fertilizer resulted in a decline in oxidation rates. Total sulfur content of sulfur-treated soils indicated that most of the sulfur applied was still present in the sampled zone. These results imply that prediction of sulfate release and fertilizer efficiency will be difficult to assess. Key words: Sulfur (elemental), S-oxidation, oxidation rates, rhodanese, sulfur-oxidizing micro-organisms


2002 ◽  
Vol 46 (1-2) ◽  
pp. 55-60 ◽  
Author(s):  
R. Yamamoto-Ikemoto ◽  
T. Komori ◽  
S. Matsui

Iron oxidation and reduction were examined using the activated sludge from a municipal plant. Iron contents of the activated sludge were 1–2%. Iron oxidation rates were correlated with the initial iron concentrations. Iron reducing rates could be described by the Monod equation. The effects of iron reducing bacteria on sulfate reduction, denitrification and poly-P accumulation were examined. Iron reduction suppressed sulfate reduction by competing with hydrogen produced from protein. Denitrification was outcompeted with iron reduction and sulfate reduction. These phenomena could be explained thermodynamically. Poly-P accumulation was also suppressed by denitrification. The activity of iron reduction was relatively high.


Sign in / Sign up

Export Citation Format

Share Document