State of Charge (SOC) Estimation of Ni-MH Battery Based on Least Square Support Vector Machines

2011 ◽  
Vol 211-212 ◽  
pp. 1204-1209 ◽  
Author(s):  
Xuan Wu ◽  
Lin Mi ◽  
Wei Tan ◽  
Jia Lei Qin ◽  
Meng Na Zhao

This paper presents a new method to estimate the state of charge (SOC) of Ni-MH battery pack in hybrid electric vehicles (HEV). The proposed method establishes the relationship of the SOC to the battery’s voltage, current and temperature by using least square support vector machines (LS-SVM). According to the nonlinear characteristics of a battery pack system, the nonlinear SVM with polynomial kernel are developed for the estimation of the SOC with LS-SVM algorithm. To be more efficient in application, this method is also simplified in this paper. The results have conformed that the proposed method is able to estimate the SOC of Ni-MH battery with high accuracy and noise tolerating ability.

Author(s):  
Hedieh Sajedi ◽  
Mehran Bahador

In this paper, a new approach for segmentation and recognition of Persian handwritten numbers is presented. This method utilizes the framing feature technique in combination with outer profile feature that we named this the adapted framing feature. In our proposed approach, segmentation of the numbers into digits has been carried out automatically. In the classification stage of the proposed method, Support Vector Machines (SVM) and k-Nearest Neighbors (k-NN) are used. Experimentations are conducted on the IFHCDB database consisting 17,740 numeral images and HODA database consisting 102,352 numeral images. In isolated digit level on IFHCDB, the recognition rate of 99.27%, is achieved by using SVM with polynomial kernel. Furthermore, in isolated digit level on HODA, the recognition rate of 99.07% is achieved by using SVM with polynomial kernel. The experiments illustrate that applying our proposed method resulted higher accuracy compared to previous researches.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0257901
Author(s):  
Yanjing Bi ◽  
Chao Li ◽  
Yannick Benezeth ◽  
Fan Yang

Phoneme pronunciations are usually considered as basic skills for learning a foreign language. Practicing the pronunciations in a computer-assisted way is helpful in a self-directed or long-distance learning environment. Recent researches indicate that machine learning is a promising method to build high-performance computer-assisted pronunciation training modalities. Many data-driven classifying models, such as support vector machines, back-propagation networks, deep neural networks and convolutional neural networks, are increasingly widely used for it. Yet, the acoustic waveforms of phoneme are essentially modulated from the base vibrations of vocal cords, and this fact somehow makes the predictors collinear, distorting the classifying models. A commonly-used solution to address this issue is to suppressing the collinearity of predictors via partial least square regressing algorithm. It allows to obtain high-quality predictor weighting results via predictor relationship analysis. However, as a linear regressor, the classifiers of this type possess very simple topology structures, constraining the universality of the regressors. For this issue, this paper presents an heterogeneous phoneme recognition framework which can further benefit the phoneme pronunciation diagnostic tasks by combining the partial least square with support vector machines. A French phoneme data set containing 4830 samples is established for the evaluation experiments. The experiments of this paper demonstrates that the new method improves the accuracy performance of the phoneme classifiers by 0.21 − 8.47% comparing to state-of-the-arts with different data training data density.


Sign in / Sign up

Export Citation Format

Share Document