Prepared and Microwave-Absorption Properties of SiC Coated Ni Nanocapsules

2011 ◽  
Vol 217-218 ◽  
pp. 152-157 ◽  
Author(s):  
Gui Mei Shi ◽  
Jin Bing Zhang ◽  
Shu Lian ◽  
Long Shan Chen

SiC coated Ni nanocapsules were prepared by arc evaporating the mixture of Ni and SiC powders in Ar and H2 atmosphere. HRTEM shows the as-prepared nanoparticles form in a core¬¬¬-shell structure, with the size of nanoparticles in range of 20-50nm and the thickness of the shell 2-6nm. X-Ray and X-ray photoelectron spectroscopy show core consist of Ni, while the shell consists of SiC. The core-shell structure can prevent Ni nanoparticles from oxidation and agglomeration. The electromagnetic characters were measured by Agilent 8722ES microwave network analyzer in the band of 2-18GHz. The reflection loss R(dB) of less than –20 dB was obtained in the frequency range of 3.8-11.1GHz with absorber thickness of 2.5–5mm, An optimal reflection loss of –33.4dB was reached at 7.4GHz with an absorber thickness of 3.5mm.In addition, the optimal RL obviously shifts to the lower-frequency range with increasing thickness of the layer.

2009 ◽  
Vol 79-82 ◽  
pp. 743-746 ◽  
Author(s):  
Gui Mei Shi ◽  
Jin Hu Zhang ◽  
Shu Lian ◽  
Ge Song ◽  
Jin Bing Zhang

-C-Fe-Si/SiC coated Fe nanocapsules were prepared by arc evaporating the mixture of Fe and SiC powders in He and H2 atmosphere, and their microstructure, surface compositions and electromagnetic(EM) properties(2–18GHz) were investigated by means of high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and network analyzer, respectively. The reflection loss R of less than –20 dB was obtained in the frequency range of 3.13–13.6 GHz with an absorber thickness of 2.0–5.5 mm. An optimal reflection loss of–37.2 dB was reached at 5.6GHz with an absorber thickness of 4.5mm. The microwave absorptive mechanisms of -C-Fe-Si/SiC coated Fe nanocapsules absorbent were discussed.


2013 ◽  
Vol 712-715 ◽  
pp. 229-232 ◽  
Author(s):  
Gui Mei Shi ◽  
Da Wei Lu ◽  
Yan Zhang

BiFeO3coated ferromagnetic Fe nanocapsules is synthesized by arc-discharging method. Typical HRTEM images show that the nanocapsules form in a core-shell structure. X-ray photoelectron spectrum (XPS) and X-ray diffraction (XRD) reveal that the core is ferromagnetic Fe, while the shell is BiFeO3/Bi2Fe4O9.The reflection loss R of less than -10 dB was obtained for the whole frequency within the 2-18GHz range by choosing an appropriate layer thickness between 1.0mm and 7.0mm. An optimal reflection loss of -21.5 dB was reached at 10.6 GHz with an absorber thickness of 2.0mm. It is worth noticing that the BiFeO3coated Fe nanocapsules have two absorption peaks below -10 dB at each thickness layer ranging from 4.0nm to 7.0nm, which means the composites nanocapsules absorber simultaneously are able to absorb microwaves in different band of several GHz.


2010 ◽  
Vol 663-665 ◽  
pp. 1252-1255 ◽  
Author(s):  
Gui Mei Shi ◽  
Shu Lian ◽  
Ge Song ◽  
Jin Bing Zhang

BN coated Ni nanocapsules were prepared by arc evaporating Ni-B amorphous alloy powders synthesized by a mechanochemical reaction, and their microstructure, surface component as well as electromagnetic properties (2-18 GHz) were investigated by means of high-resolution transmission electron microscopy, X-ray diffraction , photoluminescence spectra (PL) and a network analyzer, respectively. The reflection loss R (dB) of the nanocapsules less than -20 dB was obtained in the frequency range of 4.3-18 GHz for an absorber thickness of 1.4-6 mm. An optimal reflection loss of -32.0 dB was reached at 13 GHz with an absorber thickness of 2 mm. The microwave absorptive mechanisms of BN-coated Ni nanocapsule absorbent were discussed.


Coatings ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 523
Author(s):  
Yang Wang ◽  
Zhihao Rong ◽  
Xincun Tang ◽  
Shan Cao

In recent years, arsenic pollution has seriously harmed human health. Arsenic-containing waste should be treated to render it harmless and immobilized to form a stable, solid material. Scorodite (iron arsenate) is recognized as the best solid arsenic material in the world. It has the advantages of high arsenic content, good stability, and a low iron/arsenic molar ratio. However, scorodite can decompose and release arsenic in a neutral and alkaline environment. Ferroferric oxide (Fe3O4) is a common iron oxide that is insoluble in acid and alkali solutions. Coating a Fe3O4 shell that is acid- and alkali-resistant on the surface of scorodite crystals will improve the stability of the material. In this study, a scorodite@Fe3O4 core–shell structure material was synthesized. The synthesized core–shell material was detected by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Raman, and energy-dispersive X-ray spectroscopy (EDS) techniques, and the composition and structure were confirmed. The synthesis condition and forming process were analyzed. Long-term leaching tests were conducted to evaluate the stability of the synthesized scorodite@Fe3O4. The results indicate that the scorodite@Fe3O4 had excellent stability after 20 days of exposure to neutral and weakly alkaline solutions. The inert Fe3O4 shell could prevent the scorodite core from corrosion by the external solution. The scorodite@Fe3O4 core–shell structure material was suitable for the immobilization of arsenic and has potential application prospects for the treatment of arsenic-containing waste.


2017 ◽  
Vol 10 (06) ◽  
pp. 1750069 ◽  
Author(s):  
Huijing Yang ◽  
Qinglu Wang ◽  
Li Wang ◽  
Zelin Zhang ◽  
Yuanlin Li ◽  
...  

We synthesized SiC nanorods/Ni core-shell structure (SiCR-Ni) by a facile solution method and researched their dielectric and microwave absorption properties. The dielectric and microwave absorbing properties of SiCR-Ni are superior to SiC nanorods (SiC[Formula: see text]. The maximum absorption peak of SiCR-Ni is almost three times that of SiCR. The bandwidth of effective absorption of SiCR-Ni covers 64% of [Formula: see text]-band. The improved properties of SiCR-Ni originate from multi-polarization in the special core-shell structure of SiCR-Ni.


RSC Advances ◽  
2017 ◽  
Vol 7 (36) ◽  
pp. 22454-22460 ◽  
Author(s):  
Xiao-Juan Zhang ◽  
Shan-Wen Wang ◽  
Guang-Sheng Wang ◽  
Zhen Li ◽  
Ao-Ping Guo ◽  
...  

Core–shell structural NiS2@MoS2 nanospheres have been successfully fabricated and they possess enhanced microwave absorption properties as compared to single NiS2 nanospheres or MoS2 nanoplates due to this core–shell structure.


Nanomaterials ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 141 ◽  
Author(s):  
Guangzhen Cui ◽  
Yanli Lu ◽  
Wei Zhou ◽  
Xuliang Lv ◽  
Jiangnan Hu ◽  
...  

Magnetic nanoparticles, such as Fe3O4 and Co3O4, play a vital role in the research on advanced microwave absorbing materials, even if problems such as high density and narrow band impedance matching are still unsolved. Herein, the study of lightweight hollow Fe3O4@reduced graphite oxide (RGO) nanocomposites synthesized via the solvothermal method is presented. The microstructure and crystal morphology of the materials were characterized by X-ray diffractometer (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) analyses. Single crystalline hollow Fe3O4 spheres were grown onto RGO flakes, leading to the formation of heterojunction, which further influenced the microwave absorption properties. The latter were evaluated by standard microwave characterization in the frequency range of 2–18 GHz. It was found that, for a specific [email protected] g RGO composite, the minimum reflection loss can reach −41.89 dB at 6.7 GHz, while the reflection loss was less than −10 dB from 3.4 GHz to 13.6 GHz for a nanocomposite sample thickness in the range of 1–4 mm. The combination of these two materials thus proved to give remarkable microwave absorption properties, owing to enhanced magnetic losses and favorable impedance matching conditions.


Sign in / Sign up

Export Citation Format

Share Document