In Situ Irradiated X-ray Photoelectron Spectroscopy on the Ag-Zn0.5Cd0.5S Core–Shell Structure and the Hydrogen Production Activity

2020 ◽  
Vol 8 (16) ◽  
pp. 6488-6495 ◽  
Author(s):  
Shen-wei Bai ◽  
Hui Mei ◽  
Gang-qiang Zhu ◽  
Ming-gang Zhang ◽  
Wei-zhao Huang ◽  
...  
NANO ◽  
2013 ◽  
Vol 08 (06) ◽  
pp. 1350061 ◽  
Author(s):  
PENG AN ◽  
FANG ZUO ◽  
XINHUA LI ◽  
YUANPENG WU ◽  
JUNHUA ZHANG ◽  
...  

A biomimetic and facile approach for integrating Fe 3 O 4 and Au with polydopamine (PDA) was proposed to construct gold-coated Fe 3 O 4 nanoparticles ( Fe 3 O 4@ Au – PDA ) with a core–shell structure by coupling in situ reduction with a seed-mediated method in aqueous solution at room temperature. The morphology, structure and composition of the core–shell structured Fe 3 O 4@ Au – PDA nanoparticles were characterized by transmission electron microscopy (TEM), X-ray powder diffraction (XRD) and X-ray photoelectron spectrometry (XPS). The formation process of Au shell was assessed using a UV-Vis spectrophotometer. More importantly, according to investigating changes in PDA molecules by Fourier transform infrared spectroscopy (FTIR) and in preparation process of the zeta-potential data of nanoparticles, the mechanism of core–shell structure formation was proposed. Firstly, PDA-coated Fe 3 O 4 are obtained using dopamine (DA) self-polymerization to form thin and surface-adherent PDA films onto the surface of a Fe 3 O 4 "core". Then, Au seeds are attached on the surface of PDA-coated Fe 3 O 4 via electrostatic interaction in order to serve as nucleation centers catalyzing the reduction of Au 3+ to Au 0 by the catechol groups in PDA. Accompanied by the deposition of Au , PDA films transfer from the surface of Fe 3 O 4 to that of Au as stabilizing agent. In order to confirm the reasonableness of this mechanism, two verification experiments were conducted. The presence of PDA on the surface of Fe 3 O 4@ Au – PDA nanoparticles was confirmed by the finding that glycine or ethylenediamine could be grafted onto Fe 3 O 4@ Au – PDA nanoparticles through Schiff base reaction. In addition, Fe 3 O 4@ Au – DA nanoparticles, in which DA was substituted for PDA, were prepared using the same method as that for Fe 3 O 4@ Au – PDA nanoparticles and characterized by UV-Vis, TEM and FTIR. The results validated that DA possesses multiple functions of attaching Au seeds as well as acting as both reductant and stabilizing agent, the same functions as those of PDA.


Coatings ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 523
Author(s):  
Yang Wang ◽  
Zhihao Rong ◽  
Xincun Tang ◽  
Shan Cao

In recent years, arsenic pollution has seriously harmed human health. Arsenic-containing waste should be treated to render it harmless and immobilized to form a stable, solid material. Scorodite (iron arsenate) is recognized as the best solid arsenic material in the world. It has the advantages of high arsenic content, good stability, and a low iron/arsenic molar ratio. However, scorodite can decompose and release arsenic in a neutral and alkaline environment. Ferroferric oxide (Fe3O4) is a common iron oxide that is insoluble in acid and alkali solutions. Coating a Fe3O4 shell that is acid- and alkali-resistant on the surface of scorodite crystals will improve the stability of the material. In this study, a scorodite@Fe3O4 core–shell structure material was synthesized. The synthesized core–shell material was detected by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Raman, and energy-dispersive X-ray spectroscopy (EDS) techniques, and the composition and structure were confirmed. The synthesis condition and forming process were analyzed. Long-term leaching tests were conducted to evaluate the stability of the synthesized scorodite@Fe3O4. The results indicate that the scorodite@Fe3O4 had excellent stability after 20 days of exposure to neutral and weakly alkaline solutions. The inert Fe3O4 shell could prevent the scorodite core from corrosion by the external solution. The scorodite@Fe3O4 core–shell structure material was suitable for the immobilization of arsenic and has potential application prospects for the treatment of arsenic-containing waste.


Langmuir ◽  
2002 ◽  
Vol 18 (21) ◽  
pp. 7780-7784 ◽  
Author(s):  
Shiyong Liu ◽  
Yinghua Ma ◽  
Steven P. Armes ◽  
C. Perruchot ◽  
J. F. Watts

2011 ◽  
Vol 217-218 ◽  
pp. 152-157 ◽  
Author(s):  
Gui Mei Shi ◽  
Jin Bing Zhang ◽  
Shu Lian ◽  
Long Shan Chen

SiC coated Ni nanocapsules were prepared by arc evaporating the mixture of Ni and SiC powders in Ar and H2 atmosphere. HRTEM shows the as-prepared nanoparticles form in a core¬¬¬-shell structure, with the size of nanoparticles in range of 20-50nm and the thickness of the shell 2-6nm. X-Ray and X-ray photoelectron spectroscopy show core consist of Ni, while the shell consists of SiC. The core-shell structure can prevent Ni nanoparticles from oxidation and agglomeration. The electromagnetic characters were measured by Agilent 8722ES microwave network analyzer in the band of 2-18GHz. The reflection loss R(dB) of less than –20 dB was obtained in the frequency range of 3.8-11.1GHz with absorber thickness of 2.5–5mm, An optimal reflection loss of –33.4dB was reached at 7.4GHz with an absorber thickness of 3.5mm.In addition, the optimal RL obviously shifts to the lower-frequency range with increasing thickness of the layer.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1201
Author(s):  
Xinghua Ji ◽  
Cheng Zhang ◽  
Shufeng Li

SiCp reinforced aluminium matrix composites (AMCs), which are widely used in the aerospace, automotive, and electronic packaging fields along with others, are usually prepared by ex situ techniques. However, interfacial contamination and poor wettability of the ex situ techniques make further improvement in their comprehensive performance difficult. In this paper, SiCp reinforced AMCs with theoretical volume fractions of 15, 20, and 30% are prepared by powder metallurgy and in situ reaction via an Al-Si-C system. Moreover, a combined method of external addition and an in situ method is used to investigate the synergistic effect of ex situ and in situ SiCp on AMCs. SiC particles can be formed by an indirect reaction: 4Al + 3C → Al4C3 and Al4C3 + 3Si → 3SiC + 4Al. This reaction is mainly through the diffusion of Si, in which Si diffuses around Al4C3 and then reacts with Al4C3 to form SiCp. The in situ SiC particles have a smooth boundary, and the particle size is approximately 1–3 μm. A core-shell structure having good bonding with an aluminium matrix was generated, which consists of an ex situ SiC core and an in situ SiC shell with a thickness of 1–5 μm. The yield strength and ultimate tensile strength of in situ SiCp reinforced AMCs can be significantly increased with a constant ductility by adding 5% ex situ SiCp for Al-28Si-7C. The graphite particle size has a significant effect on the properties of the alloy. A criterion to determine whether Al4C3 is a complete reaction is achieved, and the forming mechanism of the core-shell structure is analysed.


2011 ◽  
Vol 71-78 ◽  
pp. 928-931
Author(s):  
Jin Liang Wu ◽  
Yong Xing Zhang ◽  
Chun Sun Zhang

Nowadays, there are dominantly two ways of producing modified emulsified asphalt ,one of which is to emulsify modified asphalt, the other to modify asphalt emulsion. But they have the same defect that modifier cannot be evenly mixed with asphalt emulsion, which has side effect on the performance of modified emulsified asphalt. The emulsified asphalt and modifier have different traits in structure and property. In order to make the modifier disperse in asphalt emulsion evenly to improve the performance of modified emulsified asphalt, a tentative idea is brought forward: we shall utilize in-situ polymerization and core-shell structure to enhance feature of emulsified asphalt. Core-shell structure is a method of synthesizing composite material, which can assist to achieve sound effect of the two kinds of materials. The point to emphasize is, in this paper, the introduction and feasibility of the method, its specialty against current mainly methods, the difficulties encountered in practice as well as its promising prospect and the anticipated target to achieve will all be illustrated.


2021 ◽  
Vol 7 (2) ◽  
pp. 320-327
Author(s):  
Shen-wei Bai ◽  
Hui Mei ◽  
Wei-zhao Huang ◽  
Ming-gang Zhang ◽  
Lai-fei Cheng

2019 ◽  
Vol 35 (14) ◽  
pp. 1727-1734
Author(s):  
Lisheng Zhong ◽  
Haiqiang Bai ◽  
Junzhe Wei ◽  
Jianlei Zhu ◽  
Jianhong Peng ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Chaoxia Zhao ◽  
Jie Yang ◽  
Yihan Wang ◽  
Bo Jiang

Well-dispersed nanoscale zero-valent iron (NZVI) supported inside the pores of macroporous silica foams (MOSF) composites (Mx-NZVI) has been prepared as the Cr(VI) adsorbent by simply impregnating the MOSF matrix with ferric chloride, followed by the chemical reduction with NaHB4 in aqueous solution at ambient atmosphere. Through the support of MOSF, the reactivity and stability of NZVI are greatly improved. Transmission electron microscopy (TEM) results show that NZVI particles are spatially well-dispersed with a typical core-shell structure and supported inside MOSF matrix. The N2 adsorption-desorption isotherms demonstrate that the Mx-NZVI composites can maintain the macroporous structure of MOSF and exhibit a considerable high surface area (503 m2·g−1). X-ray photoelectron spectroscopy (XPS) and powder X-ray diffraction (XRD) measurements confirm the core-shell structure of iron nanoparticles composed of a metallic Fe0 core and an Fe(II)/Fe(III) species shell. Batch experiments reveal that the removal efficiency of Cr(VI) can reach 100% when the solution contains 15.0 mg·L−1 of Cr(VI) at room temperature. In addition, the solution pH and the composites dosage can affect the removal efficiency of Cr(VI). The Langmuir isotherm is applicable to describe the removal process. The kinetic studies demonstrate that the removal of Cr(VI) is consistent with pseudo-second-order kinetic model.


Sign in / Sign up

Export Citation Format

Share Document