Airfoil Design and Numerical Analysis for Morphing Wing Structure

2011 ◽  
Vol 228-229 ◽  
pp. 169-173 ◽  
Author(s):  
Wen Jun Dong ◽  
Qin Sun

This paper investigates an unconventional honeycomb cellular structure featuring a negative Poisson’s ratio with the ability to undergo large overall displacements with limited straining of its solid material in the spanwise direction. Numerical analyses are performed to exploit such properties in the design of a morphing airfoil. The commercial simulation software ANSYS is used to carry on these processes. The cellular structure is designed to satisfy the requirements of configuration changing occurred while wing morphing. Finally, detailed numerical models of the structures are presented as a possible approach to evaluate the stress distribution of the structure. According to simulation results, the airfoil designed in this paper has the property of negative Poisson’s ratio, which is useful to the morphing wing aircraft design.

2007 ◽  
Vol 544-545 ◽  
pp. 43-46
Author(s):  
Moon Kyu Lee ◽  
Jae Bong Choi ◽  
Kui Won Choi ◽  
H.N. Lim

In the area of biomaterials, the structures with negative Poisson’s ratio are able to be applied to the polymer component of prosthesis, artificial blood-vessel and catheter. To induce its characteristic, previous studies postulated many structural shapes such as non-convex shape with reentrant corners and re-entrant honeycomb. In this study, we proposed the rotational particle structures and investigated the Poisson’s ratio and the ratio (Ee/E) of the elastic modulus of these structures based on structural design variables using finite element method. The auto-meshing preprocessor was coded using MATLAB in order to construct numerical models as design variables and perform finite element analysis (FEA) effectively. Three selected design variables were the ratio of fibril’s length to particle’s diameter (0.2~2.0), the ratio of fibril’s length to its width (0.02~0.2) and the angle of fibril about horizontal axis (0 degree ~ tangential angle). Finite element model has 2D plain stress quadratic element and composed of 515 particles and 6-linked fibrils per each particle. For all of 213 cases, one side of each model is applied a tension, 0.1% strain and analyze Poisson’s ratio and the ratio (Ee/E) of the elastic modulus. As the ratio of fibril’s length to particle’s diameter increased and the ratio of fibril’s diameter to fibril’s length decreased fixing the fibril’s angle with 45 degree, the negative Poisson effect of rotational particle structures increased. The ratio of elastic modulus of these structures decreased with Poisson’s ratio. The results show the reasonable values as compared with the previous analytical results.


2021 ◽  
pp. 109963622110204
Author(s):  
Fenglian Li ◽  
Wenhao Yuan ◽  
Chuanzeng Zhang

Based on the hyperbolic tangent shear deformation theory, free vibration and sound insulation of two different types of functionally graded (FG) honeycomb sandwich plates with negative Poisson’s ratio are studied in this paper. Using Hamilton’s principle, the vibration and vibro-acoustic coupling dynamic equations for FG honeycomb sandwich plates with simply supported edges are established. By applying the Navier’s method and fluid–solid interface conditions, the derived governing dynamic equations are solved. The natural frequencies and the sound insulation of FG honeycomb sandwich plates obtained in this work are compared with the numerical results by the finite element simulation. It is proven that the theoretical models for the free vibration and the sound insulation are accurate and efficient. Moreover, FG sandwich plates with different honeycomb cores are investigated and compared. The corresponding results show that the FG honeycomb core with negative Poisson’s ratio can yield much lower frequencies. Then, the influences of various geometrical and material parameters on the vibration and sound insulation performance are systematically analyzed.


Sign in / Sign up

Export Citation Format

Share Document