Electrocatalytic Degradation of Cellulose Using Lead Dioxide Anode

2011 ◽  
Vol 233-235 ◽  
pp. 1036-1039 ◽  
Author(s):  
De Fa Meng ◽  
Gang Li ◽  
Fang Yang ◽  
Zhi Hua Liu

A novel method of cellulose degradation is investigated in this paper. In this work, a three-electrode system, which contains a Pb/PbO2 anode, two copper cathodes and a reference saturated calomel electrode (SCE), is applied to electrocatalytic degradation of cellulose. The composition of the products in filtrate is characterized by phenol-sulfuric acid method, NMR and GC-MS. In addition, the solid sample is analyzed via Ubbelohde capillary viscometer and FT-IR spectra. The results suggest that it is effective to convert cellulose to soluble sugar, 5-hydroxymethylfurfural (5-HMF) and other products by electrocatalytic method. The reaction mechanism of cellulose degradation is also discussed.

1989 ◽  
Vol 42 (9) ◽  
pp. 1527 ◽  
Author(s):  
TH Randle ◽  
AT Kuhn

Lead dioxide is a strong oxidizer in sulfuric acid, consequently electrochemical oxidation of solution species at a lead dioxide anode may occur by a two-step, C-E process (chemical oxidation of solution species by PbO2 followed by electrochemical regeneration of the reduced lead dioxide surface). The maximum rate of each step has been determined in sulfuric acid for specified lead dioxide surfaces and compared with the rates observed for the electrochemical oxidation of cerium(III) and manganese(II) on the same electrode surfaces. While the rate of electrochemical oxidation of a partially reduced PbO2 surface may be sufficient to support the observed rates of CeIII and MnII oxidation at the lead dioxide anode, the rate of chemical reaction between PbO2 and the reducing species is not. Hence it is concluded that the lead dioxide electrode functions as a simple, 'inert' electron-transfer agent during the electrochemical oxidation of CellI and MnII in sulfuric acid. In general, it will most probably be the rate of the chemical step which determines the feasibility or otherwise of the C-E mechanism.


1958 ◽  
Vol 105 (2) ◽  
pp. 100 ◽  
Author(s):  
J. C. Grigger ◽  
H. C. Miller ◽  
F. D. Loomis

2020 ◽  
Vol 10 (8) ◽  
pp. 2692
Author(s):  
Anirban Karmakar ◽  
Luísa M.D.R.S. Martins ◽  
Yuliya Yahorava ◽  
M. Fátima C. Guedes da Silva ◽  
Armando J. L. Pombeiro

The synthesis and characterization of a set of iron(III) complexes, viz. the mononuclear [Fe(L)3] (1) and [NHEt3][Fe(L)2(Cl)2] (2), the dinuclear methoxido-bridged [Fe(L)2(μ-OMe)]2.DMF.1.5MeOH (3), and the heteronuclear Fe(III)/Na(I) two-dimensional coordination polymer [Fe(N3)(μ-L)2(μ-O)1/2(Na)(μ-H2O)1/2]n (4), are reported. Reactions of 3-amino-2-pyrazinecarboxylic acid (HL) with iron(III) chloride under different reaction conditions were studied, and the obtained compounds were characterized by elemental analysis, Fourier Transform Infrared (FT-IR) spectroscopy, and X-ray single-crystal diffraction. Compound 1 is a neutral mononuclear complex, whereas 2 is mono-anionic with its charge being neutralized by triethylammonium cation. Compounds 3 and 4 display a di-methoxido-bridged dinuclear complex and a two-dimensional heterometallic Fe(III)/Na(I) polynuclear coordination polymer, respectively. Compounds 3 and 4 are the first examples of methoxido- and oxido-bridged iron(III) complexes, respectively, with 3-amino-2-pyrazinecarboxylate ligands. The electrochemical study of these compounds reveals a facile single-electron reversible Fe(III)-to-Fe(II) reduction at a positive potential of 0.08V vs. saturated calomel electrode (SCE), which is in line with their ability to act as efficient oxidants and heterogeneous catalysts for the solvent-free microwave-assisted peroxidative oxidation (with tert-butyl hydroperoxide) of cyclohexanol to cyclohexanone (almost quantitative yields after 1 h). Moreover, the catalysts are easily recovered and reused for five consecutive cycles, maintaining a high activity and selectivity.


1989 ◽  
Vol 42 (2) ◽  
pp. 229 ◽  
Author(s):  
TH Randle ◽  
AT Kuhn

The electrolytic oxidation reactions of cerium(III) and manganeseII) in sulfuric acid have been used as probes to investigate the mechanism of the lead dioxide anode. The kinetics observed for such reactions at the lead dioxide surface provide no direct support for the proposal that the lead dioxide anode functions by a sequential 'two-step' mechanism (heterogeneous chemical oxidation of solution species followed by electrochemical oxidation of the reduced lead dioxide surface); rather the kinetics show characteristics similar to those observed previously for the oxidation of cerium(III) and manganese(II) at the platinum electrode, suggesting that the lead dioxide surface functions as a simple, 'inert' electron-transfer agent.


1965 ◽  
Vol 10 (12) ◽  
pp. 1185-1187 ◽  
Author(s):  
M.S.V. Pathy ◽  
H.V.K. Udupa

2013 ◽  
Vol 67 (8) ◽  
pp. 1873-1879 ◽  
Author(s):  
Z. Y. Bian ◽  
Y. Bian ◽  
H. Wang ◽  
L. Pang ◽  
A. Z. Ding

A Pd/C gas-diffusion cathode which generated H2O2 through a two-electron reduction process of fed oxygen molecule was used to degrade 4-chlorophenol in an undivided electrolysis device. The kinetics of 4-chlorophenol degradation has been investigated by the electrochemical oxidation processes. By inspecting the relationship between the rate constants (k) and influencing factors, using first-order kinetics to describe the electrochemical oxidation process of 4-chlorophenol, a kinetic model of 4-chlorophenol degradation process was proposed to calculate the 4-chlorophenol effluent concentration: C = C0 exp( -3:76 × 10-6C-0.50J2M-0.7Q0.17Dt). It was found that the electrocatalytic degradation rate of 4-chlorophenol was affected by current density, electrode distance, air-feeding rate, electrolyte concentration and initial 4-chlorophenol concentration. The kinetics obtained from the experiments under corresponding electrochemical conditions could provide an accurate estimation of 4-chlorophenol effluent concentration and lead to better design of the electrochemical reactor.


1959 ◽  
Vol 12 (2) ◽  
pp. 127 ◽  
Author(s):  
DFA Koch

The overpotential (n)-log current density (log i) curves for the evolution of oxygen at a lead dioxide anode in 2N H2SO4 both in the absence and presence of cobaltous sulphate in solution have been used to determine the electrode kinetic constants α ; i0 for a series of temperatures and also ΔH0*:. At 25 �C in the absence of cobalt α=O.59, i0= 10-11, and ΔH0*= 15 kcal mole-1 When 13 mg/l cobaltous sulphate is added α= 1.0, i0= 10-15, and ΔH0*:=29 kcal mole-1. Possible mechanisms for the reaction are discussed on the basis of these values and the rate determining steps suggested (where M represents the PbO2 surface) are M +H2O =MOH +H+ +e in the absence of cobalt and 2CoOH++ = 2Co++ +H2O + O in its presence.


Sign in / Sign up

Export Citation Format

Share Document