Synthesis and Characteristics of NiS for Cathode of Lithium Ion Batteries

2011 ◽  
Vol 236-238 ◽  
pp. 694-697 ◽  
Author(s):  
Ling Zhi Zhu ◽  
En Shan Han ◽  
Ji Lin Cao

NiS was synthesized were prepared by hydrothermal and mechanical alloying routes, respectively, and their microstructures as well as physical and electrochemical properties have been characterized and compared. Based on XRD and SEM analyses, the NiS crystallites with nanoplate structure formed directly during a hydrothermal process. Compared with the mechanical alloying route, the hydrothermal route led to better dispersed nanoparticles with a narrower size distribution. And the electrochemical properties of the materials were characterized by charge-discharge testing and Cyclic-voltammetry. NiS were prepared by hydrothermal show proper cycling properties, its first discharge specific capacity was 584.6mAh/g.

NANO ◽  
2018 ◽  
Vol 13 (09) ◽  
pp. 1850103 ◽  
Author(s):  
Xu Chen ◽  
Chunxin Yu ◽  
Xiaojiao Guo ◽  
Qinsong Bi ◽  
Muhammad Sajjad ◽  
...  

Novelty Cu2O multi-branched nanowires and nanoparticles with size ranging from [Formula: see text]15[Formula: see text]nm to [Formula: see text]60[Formula: see text]nm have been synthesized by one-step hydrothermal process. These Cu2O nanostructures when used as anode materials for lithium-ion batteries exhibit the excellent electrochemical cycling stability and reduced polarization during the repeated charge/discharge process. The specific capacity of the Cu2O nanoparticles, multi-branched nanowires and microscale are maintained at 201.2[Formula: see text]mAh/g, 259.6[Formula: see text]mAh/g and 127.4[Formula: see text]mAh/g, respectively, under the current density of 0.1[Formula: see text]A/g after 50 cycles. The enhanced electrochemical performance of the Cu2O nanostructures compared with microscale counterpart can be attributed to the larger contact area between active Cu2O nanostructures/electrolyte interface, shorter diffusion length of Li[Formula: see text] within nanostructures and the improved stress release upon lithiation/delithiation.


Membranes ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 45 ◽  
Author(s):  
Jahaziel Villarreal ◽  
Roberto Orrostieta Chavez ◽  
Sujay A. Chopade ◽  
Timothy P. Lodge ◽  
Mataz Alcoutlabi

In the present work, the effect of temperature and additives on the ionic conductivity of mixed organic/ionic liquid electrolytes (MOILEs) was investigated by conducting galvanostatic charge/discharge and ionic conductivity experiments. The mixed electrolyte is based on the ionic liquid (IL) (EMI/TFSI/LiTFSI) and organic solvents EC/DMC (1:1 v/v). The effect of electrolyte type on the electrochemical performance of a LiCoO2 cathode and a SnO2/C composite anode in lithium anode (or cathode) half-cells was also investigated. The results demonstrated that the addition of 5 wt.% succinonitrile (SN) resulted in enhanced ionic conductivity of a 60% EMI-TFSI 40% EC/DMC MOILE from ~14 mS·cm−1 to ~26 mS·cm−1 at room temperature. Additionally, at a temperature of 100 °C, an increase in ionic conductivity from ~38 to ~69 mS·cm−1 was observed for the MOILE with 5 wt% SN. The improvement in the ionic conductivity is attributed to the high polarity of SN and its ability to dissolve various types of salts such as LiTFSI. The galvanostatic charge/discharge results showed that the LiCoO2 cathode with the MOILE (without SN) exhibited a 39% specific capacity loss at the 50th cycle while the LiCoO2 cathode in the MOILE with 5 wt.% SN showed a decrease in specific capacity of only 14%. The addition of 5 wt.% SN to the MOILE with a SnO2/C composite-fiber anode resulted in improved cycling performance and rate capability of the SnO2/C composite-membrane anode in lithium anode half-cells. Based on the results reported in this work, a new avenue and promising outcome for the future use of MOILEs with SN in lithium-ion batteries (LIBs) can be opened.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4751
Author(s):  
Lian-Bang Wang ◽  
He-Shan Hu ◽  
Wei Lin ◽  
Qing-Hong Xu ◽  
Jia-Dong Gong ◽  
...  

Lithium-rich manganese oxide is a promising candidate for the next-generation cathode material of lithium-ion batteries because of its low cost and high specific capacity. Herein, a series of xLi2MnO3·(1 − x)LiMnO2 nanocomposites were designed via an ingenious one-step dynamic hydrothermal route. A high concentration of alkaline solution, intense hydrothermal conditions, and stirring were used to obtain nanoparticles with a large surface area and uniform dispersity. The experimental results demonstrate that 0.072Li2MnO3·0.928LiMnO2 nanoparticles exhibit a desirable electrochemical performance and deliver a high capacity of 196.4 mAh g−1 at 0.1 C. This capacity was maintained at 190.5 mAh g−1 with a retention rate of 97.0% by the 50th cycle, which demonstrates the excellent cycling stability. Furthermore, XRD characterization of the cycled electrode indicates that the Li2MnO3 phase of the composite is inert, even under a high potential (4.8 V), which is in contrast with most previous reports of lithium-rich materials. The inertness of Li2MnO3 is attributed to its high crystallinity and few structural defects, which make it difficult to activate. Hence, the final products demonstrate a favorable electrochemical performance with appropriate proportions of two phases in the composite, as high contents of inert Li2MnO3 lower the capacity, while a sufficient structural stability cannot be achieved with low contents. The findings indicate that controlling the composition through a dynamic hydrothermal route is an effective strategy for developing a Mn-based cathode material for lithium-ion batteries.


Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 367
Author(s):  
Yueyue Kong ◽  
Ranran Jiao ◽  
Suyuan Zeng ◽  
Chuansheng Cui ◽  
Haibo Li ◽  
...  

Among the transition metal oxides, the Mn3O4 nanostructure possesses high theoretical specific capacity and lower operating voltage. However, the low electrical conductivity of Mn3O4 decreases its specific capacity and restricts its application in the energy conversion and energy storage. In this work, well-shaped, octahedron-like Mn3O4 nanocrystals were prepared by one-step hydrothermal reduction method. Field emission scanning electron microscope, energy dispersive spectrometer, X-ray diffractometer, X-ray photoelectron spectrometer, high resolution transmission electron microscopy, and Fourier transformation infrared spectrometer were applied to characterize the morphology, the structure, and the composition of formed product. The growth mechanism of Mn3O4 nano-octahedron was studied. Cyclic voltammograms, galvanostatic charge–discharge, electrochemical impedance spectroscopy, and rate performance were used to study the electrochemical properties of obtained samples. The experimental results indicate that the component of initial reactants can influence the morphology and composition of the formed manganese oxide. At the current density of 1.0 A g−1, the discharge specific capacity of as-prepared Mn3O4 nano-octahedrons maintains at about 450 mAh g−1 after 300 cycles. This work proves that the formed Mn3O4 nano-octahedrons possess an excellent reversibility and display promising electrochemical properties for the preparation of lithium-ion batteries.


2013 ◽  
Vol 743-744 ◽  
pp. 35-43
Author(s):  
Shi Ming Zhang ◽  
Jun Xi Zhang ◽  
Bo Cheng He ◽  
Suo Jiong Xu ◽  
Xu Ji Yuan

nanosized FePO4 and Fe1-xCexPO4 (x=0.02, 0.04, 0.08) cathode materials were synthesized by microemulsion method. The samples were prepared via a microemulsion system in a H2O/cyclohexane/Triton x-100/n-butyl alcohol at different temperatures (30 , 45 , 50 , 60 ) and then sintered at 380 and 460 for 3 h. The thermal stability, structure and morphology were investigated by means of TG/DCS, X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), and the electrochemical properties were characterized by cyclic voltammetry (CV) and galvanostatic charge and discharge tests. Results show that synthesis temperature has a great influence on the performances of FePO4, and the sample synthesized at 45 shows the best performances with a diameter of about 20 nm and a high discharge initial specific capacity of 142mAh/g and retaining 123mAh/g after 20 cycles at 0.1 C. The Ce-doped FePO4, Fe1-xCexPO4 (x=0.02, 0.04, 0.08), can effectively improve the electrochemical properties of FePO4 cathode materials. The Fe0.96Ce0.04PO4 exhibits an initial discharge capacity of 158.2mAh/g and retains 152mAh/g after 20 cycles at 0.1 C. Hence, Fe0.96Ce0.04PO4 is a promising candidate for cathode materials of lithium ion batteries.


RSC Advances ◽  
2015 ◽  
Vol 5 (101) ◽  
pp. 82960-82967
Author(s):  
Mingming Que ◽  
Yijing Wang ◽  
Yongfen Tong ◽  
Lie Chen ◽  
Junchao Wei ◽  
...  

Good electrochemical properties and reversible charge/discharge solid state composite electrolytes were achieved at high temperature by uploading 3PEG onto electrospun membranes.


2021 ◽  
Author(s):  
Heng jiang ◽  
Jie Zhang ◽  
Yibo Zeng ◽  
Yanli Chen ◽  
Hang Guo ◽  
...  

Abstract Metal sulfides are attractive anode materials for lithium ion batteries due to the high specific capacities and better electrochemical kinetics comparing to their oxide counterparts. In this paper, novel monocrystalline wurtzite ZnS@N-doped carbon (ZnS@N-C) nanoplates, whose morphology and phase are different from the common ZnS particles with cubic phase, are successfully synthesized. The ZnS@N-C nanoplates exhibit good cycling stability with a high reversible specific capacity of 536.8 mAh∙g-1 after 500 cycles at a current density of 500 mA∙g-1, which is superior to the pure ZnS nanoplates, illustrating the obvious effect of the N-doped carbon coating for alleviating volume change of the ZnS nanoplates and enhancing the electronic conductivity during charge/discharge processes. Furthermore, it is revealed that the ZnS single crystals with wurtzite phase in the ZnS@N-C nanoplates are transformed to the polycrystalline cubic phase ZnS after charge/discharge processes. In particular, the ZnS@N-C nanoplates are combined with the commercial LiNi0.6Co0.2Mn0.2O2 cathode to fabricate a new type of LiNi0.6Co0.2Mn0.2O2/ZnS@N-C complete battery, which exhibits good cycling stability up to 120 cycles at 1C rate after the prelithiation treatment on the ZnS@N-C anode, highlighting the potential of the ZnS@N-C nanoplates as an anode material for lithium ion battery.


2013 ◽  
Vol 737 ◽  
pp. 80-84 ◽  
Author(s):  
Arenst Andreas Arie ◽  
Joong Kee Lee

Silicon would seem to be a possible candidate to replace graphite or carbon as anode materials for lithium ion batteries based on its potential high capacity of 4200 mAhg-1. The main problem that must be solved for commercial application of silicon as anode material was the poor cyclic performance due to severe volume expansion during repeated charged-discharged cycles and its low electrical conductivity. In this work, we proposed Phosphorus doped (P-doped) Si films as anodes in lithium ion batteries. The electrochemical properties of the silicon based electrodes were examined by means of charge-discharge and impedance test. In comparison with the bare silicon electrode, the P type silicon electrode exhibited higher specific capacity of 2585 mAhg-1 until the 50th cycle. It was attributed to the improved electrical conductivity of Si film and reduced charge transfer resistance


Ionics ◽  
2019 ◽  
Vol 26 (2) ◽  
pp. 1057-1061
Author(s):  
Youzuo Hu ◽  
Xingquan Liu

AbstractOne-dimensional (1D) α-LiFeO2 nanorods are successfully prepared via a low-temperature solid-state reaction from α-FeOOH nanorods synthesized by hydrothermal process and used as cathode materials in lithium-ion batteries. As cathode material for lithium-ion batteries, the nanorods can achieve a high initial specific capacity of 165.85 mAh/g at 0.1 C for which a high capacity retention of 81.65% can still be obtained after 50 cycles. The excellent performance and cycling stability are attributed to the unique 1D nanostructure, which facilitates the rapid electron exchange and fast lithium-ion diffusion between electrolyte and cathode materials.


2014 ◽  
Vol 2 (6) ◽  
pp. 1818-1824 ◽  
Author(s):  
Zhonghe Bi ◽  
M. Parans Paranthaman ◽  
Bingkun Guo ◽  
Raymond R. Unocic ◽  
Harry M. Meyer III ◽  
...  

We develop a simple hydrothermal process followed by post-nitridation treatment for the synthesis of chromium, nitrogen-codoped titanium oxide, which exhibits a remarkable charge–discharge capacity at a rate of 5 C and shows an excellent stability for over 300 cycles as an anode material for lithium ion batteries.


Sign in / Sign up

Export Citation Format

Share Document