scholarly journals Study on the Synthesis of Mn3O4 Nanooctahedrons and Their Performance for Lithium Ion Batteries

Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 367
Author(s):  
Yueyue Kong ◽  
Ranran Jiao ◽  
Suyuan Zeng ◽  
Chuansheng Cui ◽  
Haibo Li ◽  
...  

Among the transition metal oxides, the Mn3O4 nanostructure possesses high theoretical specific capacity and lower operating voltage. However, the low electrical conductivity of Mn3O4 decreases its specific capacity and restricts its application in the energy conversion and energy storage. In this work, well-shaped, octahedron-like Mn3O4 nanocrystals were prepared by one-step hydrothermal reduction method. Field emission scanning electron microscope, energy dispersive spectrometer, X-ray diffractometer, X-ray photoelectron spectrometer, high resolution transmission electron microscopy, and Fourier transformation infrared spectrometer were applied to characterize the morphology, the structure, and the composition of formed product. The growth mechanism of Mn3O4 nano-octahedron was studied. Cyclic voltammograms, galvanostatic charge–discharge, electrochemical impedance spectroscopy, and rate performance were used to study the electrochemical properties of obtained samples. The experimental results indicate that the component of initial reactants can influence the morphology and composition of the formed manganese oxide. At the current density of 1.0 A g−1, the discharge specific capacity of as-prepared Mn3O4 nano-octahedrons maintains at about 450 mAh g−1 after 300 cycles. This work proves that the formed Mn3O4 nano-octahedrons possess an excellent reversibility and display promising electrochemical properties for the preparation of lithium-ion batteries.

2015 ◽  
Vol 1092-1093 ◽  
pp. 216-219
Author(s):  
Pan Li Ren ◽  
Xu Ma ◽  
Ling Long Kong

In this paper the fractures appeared in the surface of nanoparticle silicon anode for lithium-ion batteries was explored. The changes of nanoparticle silicon anode before and after cycling were charactered using SEM, XRD,Cyclic voltammograms (CV) and electrochemical impedance spectroscopy (EIS). The result indicates that the electrode cracking occured in the cycling process , the CV, EIS and discharge specific capacity curves proved the fractures could lead to the degradation of the electrochemical performance.


2016 ◽  
Vol 724 ◽  
pp. 87-91 ◽  
Author(s):  
Chang Su Kim ◽  
Yong Hoon Cho ◽  
Kyoung Soo Park ◽  
Soon Ki Jeong ◽  
Yang Soo Kim

We investigated the electrochemical properties of carbon-coated niobium dioxide (NbO2) as a negative electrode material for lithium-ion batteries. Carbon-coated NbO2 powders were synthesized by ball-milling using carbon nanotubes as the carbon source. The carbon-coated NbO2 samples were of smaller particle size compared to the pristine NbO2 samples. The carbon layers were coated non-uniformly on the NbO2 surface. The X-ray diffraction patterns confirmed that the inter-layer distances increased after carbon coating by ball-milling. This lead to decreased charge-transfer resistance, confirmed by electrochemical impedance spectroscopy, allowing electrons and lithium-ions to quickly transfer between the active material and electrolyte. Electrochemical performance, including capacity and initial coulombic efficiency, was therefore improved by carbon coating by ball-milling.


2012 ◽  
Vol 1440 ◽  
Author(s):  
Jiajia Tan ◽  
Ashutosh Tiwari

ABSTRACTLi2FeP2O7 is a newly developed polyanionic cathode material for high performance lithium ion batteries. It is considered very attractive due to its large specific capacity, good thermal and chemical stability, and environmental benignity. However, the application of Li2FeP2O7 is limited by its low ionic and electronic conductivities. To overcome the above problem, a solution-based technique was successfully developed to synthesize Li2FeP2O7 powders with very fine and uniform particle size (< 1 μm), achieving much faster kinetics. The obtained Li2FeP2O7 powders were tested in lithium ion batteries by measurements of cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge/discharge cycling. We found that the modified Li2FeP2O7 cathode could maintain a relatively high capacity even at fast discharge rates.


Coatings ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 301 ◽  
Author(s):  
Yury Koshtyal ◽  
Denis Nazarov ◽  
Ilya Ezhov ◽  
Ilya Mitrofanov ◽  
Artem Kim ◽  
...  

Atomic layer deposition (ALD) provides a promising route for depositing uniform thin-film electrodes for Li-ion batteries. In this work, bis(methylcyclopentadienyl) nickel(II) (Ni(MeCp)2) and bis(cyclopentadienyl) nickel(II) (NiCp2) were used as precursors for NiO ALD. Oxygen plasma was used as a counter-reactant. The films were studied by spectroscopic ellipsometry, scanning electron microscopy, atomic force microscopy, X-ray diffraction, X-ray reflectometry, and X-ray photoelectron spectroscopy. The results show that the optimal temperature for the deposition for NiCp2 was 200–300 °C, but the optimal Ni(MeCp)2 growth per ALD cycle was 0.011–0.012 nm for both precursors at 250–300 °C. The films deposited using NiCp2 and oxygen plasma at 300 °C using optimal ALD condition consisted mainly of stoichiometric polycrystalline NiO with high density (6.6 g/cm3) and low roughness (0.34 nm). However, the films contain carbon impurities. The NiO films (thickness 28–30 nm) deposited on stainless steel showed a specific capacity above 1300 mAh/g, which is significantly more than the theoretical capacity of bulk NiO (718 mAh/g) because it includes the capacity of the NiO film and the pseudo-capacity of the gel-like solid electrolyte interface film. The presence of pseudo-capacity and its increase during cycling is discussed based on a detailed analysis of cyclic voltammograms and charge–discharge curves (U(C)).


2019 ◽  
Vol 9 (19) ◽  
pp. 4032 ◽  
Author(s):  
Luis Zuniga ◽  
Gabriel Gonzalez ◽  
Roberto Orrostieta Chavez ◽  
Jason C. Myers ◽  
Timothy P. Lodge ◽  
...  

We report results on the electrochemical performance of flexible and binder-free α-Fe2O3/TiO2/carbon composite fiber anodes for lithium-ion batteries (LIBs). The composite fibers were produced via centrifugal spinning and subsequent thermal processing. The fibers were prepared from a precursor solution containing PVP/iron (III) acetylacetonate/titanium (IV) butoxide/ethanol/acetic acid followed by oxidation at 200 °C in air and then carbonization at 550 °C under flowing argon. The morphology and structure of the composite fibers were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA). These ternary composite fiber anodes showed an improved electrochemical performance compared to the pristine TiO2/C and α-Fe2O3/C composite fiber electrodes. The α-Fe2O3/TiO2/C composite fibers also showed a superior cycling performance with a specific capacity of 340 mAh g−1 after 100 cycles at a current density of 100 mA g−1, compared to 61 mAh g−1 and 121 mAh g−1 for TiO2/C and α-Fe2O3/C composite electrodes, respectively. The improved electrochemical performance and the simple processing of these metal oxide/carbon composite fibers make them promising candidates for the next generation and cost-effective flexible binder-free anodes for LIBs.


2014 ◽  
Vol 636 ◽  
pp. 49-53
Author(s):  
Si Qi Wen ◽  
Liang Chao Gao ◽  
Jia Li Wang ◽  
Lei Zhang ◽  
Zhi Cheng Yang ◽  
...  

To improve the cycle performance of spinel LiMn2O4as the cathode of 4 V class lithium ion batteries, spinel were successfully prepared using the sol-gel method. The dependence of the physicochemical properties of the spinel LiCrxMn2-xO4(x=0,0.05,0.1,0.2,0.3,0.4) powders powder has been extensively investigated by using X-ray diffraction (XRD), scanning electron microscope (SEM), charge-discharge test and electrochemical impedance spectroscopy (EIS). The results show that as Mn is replaced by Cr, the initial capacity decreases, but the cycling performance improves due to stabilization of spinel structure. Of all, the LiCr0.2Mn1.8O4has best electrochemical performance, 107.6 mAhg-1discharge capacity, 96.1% of the retention after 50 cycles.


2018 ◽  
Vol 913 ◽  
pp. 779-785
Author(s):  
Zhong Yi Chen ◽  
Kun Ma ◽  
De Guo Zhou ◽  
Yan Liu ◽  
Yan Zong Zhang

A novel membrane electrode was fabricated by coating conductive slurry (K/Graphene composites as its important component) on copper foil. The membrane electrode, as anode of lithium ion battery, exhibited excellent columbic efficiency and specific capacity of 831 mAh g-1 after 1000 cycles. The K/Graphene composites presented a multi-layer nanostructure. It provided not only more intercalation space and intercalation sites for Li+ during the Li+ intercalation/extraction, but also alleviated the agglomeration of dispersed nanocrystals, as well as decreased the electrochemical impedance. The results suggest that the membrane electrode holds great potential as an anode material for LIBs.


2021 ◽  
Vol 22 (19) ◽  
pp. 10331
Author(s):  
Marta Cabello ◽  
Emanuele Gucciardi ◽  
Guillermo Liendo ◽  
Leire Caizán-Juananera ◽  
Daniel Carriazo ◽  
...  

Silicon–graphite (Si@G) anodes are receiving increasing attention because the incorporation of Si enables lithium-ion batteries to reach higher energy density. However, Si suffers from structure rupture due to huge volume changes (ca. 300%). The main challenge for silicon-based anodes is improving their long-term cyclabilities and enabling their charge at fast rates. In this work, we investigate the performance of Si@G composite anode, containing 30 wt.% Si, coupled with a LiNi0.8Co0.15Al0.05O2 (NCA) cathode in a pouch cell configuration. To the best of our knowledge, this is the first report on an NCA/Si@G pouch cell cycled at the 5C rate that delivers specific capacity values of 87 mAh g−1. Several techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and gas chromatography–mass spectrometry (GC–MS) are used to elucidate whether the electrodes and electrolyte suffer irreversible damage when a high C-rate cycling regime is applied, revealing that, in this case, electrode and electrolyte degradation is negligible.


2021 ◽  
Author(s):  
Yuan Fang ◽  
Tengfei Li ◽  
Fen Wang ◽  
Jianfeng Zhu

Abstract Transition metal oxides as anode materials have received extensive research owing to the high specific capacity. Whereas, the rapid decline of battery capacity caused by volume expansion and low electrical conductivity hinders the practical application of transition metal oxides. This study reported a pseudo-capacitance material polypyrrole coated Fe2O3/Mn2O3 composites material as a high stability anode for lithium-ion batteries. The polypyrrole coating layer can not only serve as a conductive network to improve electrode conductivity but also can be used as a protective buffer layer to suppress the volume change of Fe2O3/Mn2O3 during the charging and discharging process. At the same time, the porous structure of Fe2O3/Mn2O3 composite can not only provide more active sites for lithium storage but also play a certain buffer effect on the volume change of the material. Polypyrrole-coated Fe2O3/Mn2O3 composite as the anode for lithium-ion batteries shows great electrochemical storage performance, with high specific capacity (627 mAh g− 1 at a current density of 1A g− 1), great cycle stability (the capacity not shows obvious signs of attenuation after 500 cycles) and rate performance (432 mAh g− 1 at a current density of 2.0 A g− 1).


2021 ◽  
Author(s):  
Ni Wen ◽  
Siyuan Chen ◽  
xiaolong Li ◽  
Ke Zhang ◽  
Jingjie Feng ◽  
...  

Transition metal oxides (TMOs) are prospective anode materials for lithium-ion batteries (LIBs) owing to their high theoretical specific capacity. Whereas, the inherent low conductivity of TMOs restricts its application. Given...


Sign in / Sign up

Export Citation Format

Share Document