Kinetics of ο-Chloronitrobenzene Hydrogenation on Palladium/Carbon Catalyst

2011 ◽  
Vol 239-242 ◽  
pp. 161-167
Author(s):  
Xiao Zhen Wang ◽  
Yi Feng Zhu ◽  
Xiao Nian Li

A 2 wt % Pd/C catalyst has been prepared by chemical impregnation and used to catalyze the hydrogenation of o-chloronitrobenzene (o-CNB) to o-chloroaniline (o-CAN) in solvent-free conditions. The effects of reaction temperature, H2 pressure, and stirring intensity on the hydrogenation kinetics have been investigated. The hydrogenation reaction showed very high selectivity with dehalogenation side products as low as 0.3% of total yield. The favorable reaction conditions were found to be temperature T = 383 K, stirring speed = 900 rpm, and feeding ratio CNB/catalyst = 200/1 (m/m). The recycled Pd/C still retained more than 98% of its original selectivity after 12 repeat used, indicating the catalyst had strong potentials for commercial application at industrial scale.

2012 ◽  
Vol 487 ◽  
pp. 107-110
Author(s):  
Feng Wen ◽  
Yi Feng Zhu ◽  
Xiao Nian Li

Pd-only catalyst supported on activated carbon has been prepared by chemical impregnation and used to catalyze the hydrogenation of 2-chloro-6-nitrotoluene (2-CNT) to 3-chloro-2-methylaniline in solvent-free condition. The effects of reaction temperature,H2 pressure on the hydrogenation have been investigated. The reaction showed very high selectivity with the dehalogenation side product with a yield of less than 1.2 %. The most favorable conditions could be temperature= 353 K, stirring speed= 1200 rpm, H2 pressure= 1 MPa. The catalytic hydrogenation reaction was found to have a zero order with hydrogen and 1 order with 2-CNT. The apparent activation energy of the hydrogenation was 60.58 kJ/mol.


Organics ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 142-160
Author(s):  
Keith Smith ◽  
Gamal A. El-Hiti

para-Selective processes for the chlorination of phenols using sulphuryl chloride in the presence of various sulphur-containing catalysts have been successfully developed. Several chlorinated phenols, especially those derived by para-chlorination of phenol, ortho-cresol, meta-cresol, and meta-xylenol, are of significant commercial importance, but chlorination reactions of such phenols are not always as regioselective as would be desirable. We, therefore, undertook the challenge of developing suitable catalysts that might promote greater regioselectivity under conditions that might still be applicable for the commercial manufacture of products on a large scale. In this review, we chart our progress in this endeavour from early studies involving inorganic solids as potential catalysts, through the use of simple dialkyl sulphides, which were effective but unsuitable for commercial application, and through a variety of other types of sulphur compounds, to the eventual identification of particular poly(alkylene sulphide)s as very useful catalysts. When used in conjunction with a Lewis acid such as aluminium or ferric chloride as an activator, and with sulphuryl chloride as the reagent, quantitative yields of chlorophenols can be obtained with very high regioselectivity in the presence of tiny amounts of the polymeric sulphides, usually in solvent-free conditions (unless the phenol starting material is solid at temperatures even above about 50 °C). Notably, poly(alkylene sulphide)s containing longer spacer groups are particularly para-selective in the chlorination of m-cresol and m-xylenol, while, ones with shorter spacers are particularly para-selective in the chlorination of phenol, 2-chlorophenol, and o-cresol. Such chlorination processes result in some of the highest para/ortho ratios reported for the chlorination of phenols.


2014 ◽  
Vol 953-954 ◽  
pp. 981-984 ◽  
Author(s):  
Ming Yang ◽  
Yuan Dong ◽  
Han Song Cheng

The catalytic hydrogenation kinetics of N-ethylcarbazole over 5 wt% Ru/Al2O3 was investigated at various temperatures. The results shows that the hydrogenation reaction was exothermic and high temperature is unfavorable for the reaction rate. Fully hydrogenation was achieved within 1 hour under the best reaction temperature of 170 °C. The kinetics of N-ethylcarbazole follows the first-order kinetics in terms of the reactant concentration but independent of hydrogen pressure, which was maintained as a constant in the reaction process. The apparent activation energy of N-ethylcarbazole hydrogenation reaction at 150-180 °C was found to be 71.2 kJ/mol.


2019 ◽  
Vol 5 (12) ◽  
pp. 37-46
Author(s):  
K. Chalov ◽  
Yu. Lugovoy ◽  
Yu. Kosivtsov ◽  
E. Sulman

This paper presents a study of the process of thermal degradation of crosslinked polyethylene. The kinetics of polymer decomposition was studied by thermogravimetry. Crosslinked polyethylene showed high heat resistance to temperatures of 400 °C. The temperature range of 430–500 °C was determined for the loss of the bulk of the sample. According to thermogravimetric data, the decomposition process proceeds in a single stage and includes a large number of fracture, cyclization, dehydrogenation, and other reactions. The process of pyrolysis of a crosslinked polymer in a stationary-bed metal reactor was investigated. The influence of the process temperature on the yield of solid, liquid, and gaseous pyrolysis products was investigated. The optimum process temperature was 500 °C. At this temperature, the yield of liquid and gaseous products was 85.0 and 12.5% (mass.), Respectively. Samples of crosslinked polyester decomposed almost completely. The amount of carbon–containing residue was 3.5% by weight of the feedstock. With increasing temperature, the yield of liquid products decreased slightly and the yield of gaseous products increased, but their total yield did not increase. For gaseous products, a qualitative and quantitative composition was determined. The main components of the pyrolysis gas were hydrocarbons C1–C4. The calorific value of pyrolysis gas obtained at a temperature of 500 °C was 17 MJ/m3. Thus, the pyrolysis process can be used to process crosslinked polyethylene wastes to produce liquid hydrocarbons and combustible gases.


1996 ◽  
Vol 34 (5-6) ◽  
pp. 67-74 ◽  
Author(s):  
D. Orhon ◽  
S. Sözen ◽  
N. Artan

For single-sludge denitrification systems, modelling of anoxic reactors currently uses the kinetics of aerobic heterotrophic growth together with a correction factor for anoxic conditions. This coefficient is computed on the basis of respirometric measurements with the assumption that the heterotrophic yield remains the same under aerobic and anoxic coditions. The paper provides the conceptual proof that the yield coefficient is significantly lower for the anoxic growth on the basis of the energetics of the related metabolic processes. This is used for the interpretation of the very high values for the correction factor experimentally determined for a number of industrial wastewaters. A default value for the anoxic heterotrophic yield coefficient is calculated for domestic sewage and compatible wastewaters and proposed for similar evaluations.


1981 ◽  
Vol 46 (3) ◽  
pp. 693-700 ◽  
Author(s):  
Milan Strašák ◽  
Jaroslav Majer

The kinetics of oxidation of alkenes by thallic sulphate in aqueous solutions, involving the two reaction steps-the hydroxythallation and the dethallation - was studied, and the effect of salts on the kinetics was examined; this made it possible to specify more precisely the reaction mechanism and to suggest a qualitative model of the reaction coordinate. It was found that in homogeneous as well as in heterogeneous reaction conditions, the reaction can be accelerated appreciably by adding tetraalkylammonium salts. These salts not only operate as catalysts of the phase transfer, but also exert a significant kinetic effect, which can be explained with a simplification in terms of a stabilization of the transition state of the reaction.


Foods ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1809
Author(s):  
Zhanzhi Liu ◽  
Ying Li ◽  
Jing Wu ◽  
Sheng Chen

d-mannose has exhibited excellent physiological properties in the food, pharmaceutical, and feed industries. Therefore, emerging attention has been applied to enzymatic production of d-mannose due to its advantage over chemical synthesis. The gene age of N-acetyl-d-glucosamine 2-epimerase family epimerase/isomerase (AGEase) derived from Pseudomonas geniculata was amplified, and the recombinant P. geniculata AGEase was characterized. The optimal temperature and pH of P. geniculata AGEase were 60 °C and 7.5, respectively. The Km, kcat, and kcat/Km of P. geniculata AGEase for d-mannose were 49.2 ± 8.5 mM, 476.3 ± 4.0 s−1, and 9.7 ± 0.5 s−1·mM−1, respectively. The recombinant P. geniculata AGEase was classified into the YihS enzyme subfamily in the AGE enzyme family by analyzing its substrate specificity and active center of the three-dimensional (3D) structure. Further studies on the kinetics of different substrates showed that the P. geniculata AGEase belongs to the d-mannose isomerase of the YihS enzyme. The P. geniculata AGEase catalyzed the synthesis of d-mannose with d-fructose as a substrate, and the conversion rate was as high as 39.3% with the d-mannose yield of 78.6 g·L−1 under optimal reaction conditions of 200 g·L−1d-fructose and 2.5 U·mL−1P. geniculata AGEase. This novel P. geniculata AGEase has potential applications in the industrial production of d-mannose.


2021 ◽  
Author(s):  
Shi-Ping Wu ◽  
Dong-Kai Wang ◽  
Qing-Qing Kang ◽  
Guo-Ping Ge ◽  
Hongxing Zheng ◽  
...  

A novel sulfonyl radical triggered selective iodosulfonylation and bicyclizations of 1,6-dienes has been described for the first time. High selectivity and efficiency, mild reaction conditions, excellent functional group compatibility, and...


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1651
Author(s):  
Felipe de la Cruz-Martínez ◽  
Marc Martínez de Sarasa Buchaca ◽  
Almudena del Campo-Balguerías ◽  
Juan Fernández-Baeza ◽  
Luis F. Sánchez-Barba ◽  
...  

The catalytic activity and high selectivity reported by bimetallic heteroscorpionate acetate zinc complexes in ring-opening copolymerization (ROCOP) reactions involving CO2 as substrate encouraged us to expand their use as catalysts for ROCOP of cyclohexene oxide (CHO) and cyclic anhydrides. Among the catalysts tested for the ROCOP of CHO and phthalic anhydride at different reaction conditions, the most active catalytic system was the combination of complex 3 with bis(triphenylphosphine)iminium as cocatalyst in toluene at 80 °C. Once the optimal catalytic system was determined, the scope in terms of other cyclic anhydrides was broadened. The catalytic system was capable of copolymerizing selectively and efficiently CHO with phthalic, maleic, succinic and naphthalic anhydrides to afford the corresponding polyester materials. The polyesters obtained were characterized by spectroscopic, spectrometric, and calorimetric techniques. Finally, the reaction mechanism of the catalytic system was proposed based on stoichiometric reactions.


Sign in / Sign up

Export Citation Format

Share Document