Research on Behaviour of a Pre-Stressed Suspended Lattice Shells Subjected to Fire Load

2011 ◽  
Vol 243-249 ◽  
pp. 1219-1222
Author(s):  
Zhi Guo Xie ◽  
Xin Tang Wang ◽  
Ming Zhou ◽  
Jie Yin

Numerical analysis of thermal response and structural response of a suspended pre-stressed steel reticulated lattice shell are conducted for the key nodes of the structure of a gymnasium on software FDS. Two different location of fire source are considered for analysis of response displacements and stresses of the nodes of the pre-stressed lattice shell and three cables. It is shown that the response temperatures of three cables set in the structure have similar variation trend for the fire scene presented here and the fire temperature near inner cable is highest among the three cables. It is concluded that the shell element of center of the structure has largest response stress, and the element above the side cable has larger stress than the shell element above the middle cable when the fire source is located at center of the gymnasium. It is shown that decrease of the pre-stress of the outer cable far away from the fire source is smallest among the three cables set in the structure.

2011 ◽  
Vol 71-78 ◽  
pp. 3717-3720
Author(s):  
Xin Tang Wang ◽  
Jie Yin ◽  
Ming Zhou ◽  
Zhi Guo Xie

The computational model of numerical analysis of a suspended pre-stressed steel reticulated shell subjected to fire load is established with using the software Marc. Based on the model presented here, numerical analysis of thermal response and structural response of the pre-stressed steel structure are computed for the key nodes of the structure. The different location of fire source and different space height are considered for analysis of response temperature, displacements and stresses of the pre-stressed lattice shell. It is shown that the air temperatures was much higher than the response temperatures of the nodes of the lattice shell during a quite period of time after a fire takes place, and the temperature of the cable nodes are also less than the air temperature near the nodes. It is also concluded that displacement of the node right above the inner cable is the maximum among the four nodes as the fire source is located at the position under the middle cable.


2011 ◽  
Vol 71-78 ◽  
pp. 3729-3732
Author(s):  
Ming Zhou ◽  
Zhi Guo Xie ◽  
Xin Tang Wang

The computational model of numerical analysis of a suspended pre-stressed steel reticulated shell subjected to fire load is established with using the software Marc. Based on the model presented here, numerical analysis of thermal response and structural response of the pre-stressed steel structure are computed. The different space height and different rise-span ratio are considered for analysis of response temperature, displacements and stresses of the pre-stressed lattice shell under fire for one fire source. It is also shown that displacement of the node right above the inner cable is the maximum among the four nodes presented here as the fire source is located at the position right below the second-ring cable of the structure. It is concluded that the influence degree of space height of the structure on the fire response of the structure is not great, but rise-span ratio has obvious and great effect on displacements and stresses of the pre-stressed steel structure with large span in fire.


2011 ◽  
Vol 255-260 ◽  
pp. 246-250
Author(s):  
Xin Tang Wang ◽  
Zhi Guo Xie ◽  
Ming Zhou ◽  
Fen Bo Yu

The numerical model for analysis of fire behavior of the spatial pre-stressed steel structure is established based on the software Marc. Analysis of thermal response and structural response of a suspended pre-stressed steel reticulated lattice shell are computed for the key nodes of the structure. For comparison, the air temperatures near the key nodes are also calculated based on the practical formula of large space air temperature rise. The different location of fire source is considered for analysis of response temperature, displacements and stresses of the nodes of the pre-stressed lattice shell. It is shown that the air temperatures obtained from the practical formula was always higher than the response temperatures of the nodes of the lattice shell during a quite long time after a fire takes place. The results show that the displacement of the node near the center of the gymnasium in fire is close to that of the node right above the inner cable, and the displacement of the node right above the outer cable is much less than the result of the center node.


2011 ◽  
Vol 243-249 ◽  
pp. 1223-1227
Author(s):  
Xin Tang Wang ◽  
Ming Zhou ◽  
Zhi Guo Xie ◽  
Feng Bo Yu

In order to study the fire-resistance behavior of the spatial pre-stressed steel structures with large span, the model of numerical analysis of a suspended pre-stressed steel reticulated shell subjected to fire load is established with using the software Marc. Based on the model presented here, numerical analysis of thermal response and structural response of the pre-stressed steel structure are computed for the key nodes of the structure. For comparison, the air temperatures near the key nodes are also calculated based on the practical formula of large space air temperature rise. The different location of fire source is considered for analysis of response temperature, displacements and stresses of the nodes of the pre-stressed lattice shell. It is shown that the air temperatures was much higher than the response temperatures of the nodes of the lattice shell during a quite period of time after a fire takes place, and the temperature of the cable nodes are also less than the air temperature near the nodes. It is also concluded that not the cable nearest the fire source but the other cables around the cable fail to work first in the fire.


Author(s):  
Benjamin Nicoletta ◽  
John Gales ◽  
Panagiotis Kotsovinos

<p>Recent trends towards performance-based fire designs for complex and critical structures have posed questions about the fire resilience of bridge infrastructure. There are little-to-no code requirements for bridge fire resistance and practitioner guidance on the subject is limited. Research on the fire performance of cable-supported bridge structures is scarce and knowledge gaps persist that inhibit more informed fire protection designs in a variety of bridge types. There have been few numerical or experimental studies that investigate the fire performance of steel stay-cables for use in cable-supported bridges. The thermal response of these members is critical as cable systems are highly dependent on the response of individual members, such as in the case of an anchor cable for example. The study herein examines the thermal response of several varieties of unloaded steel- stay cable during exposure to a non-standard methanol pool fire and the implications for the structural response of a cable-supported bridge. Experimental thermal strain data from fire tests of various stay-cables is used to inform high-level insights for the global response of a cable-supported bridge. Namely, the effects of cable thermal expansion on the overall cable system is approximated.</p>


2011 ◽  
Vol 8 (3) ◽  
pp. 102-109
Author(s):  
K.B. Puneeth ◽  
K.N. Seetharamu

A predictive model of thermal actuator behavior has been developed and validated that can be used as a design tool to customize the performance of an actuator to a specific application. Modeling thermal actuator behavior requires the use of two sequentially or directly coupled models, the first to predict the temperature increase of the actuator due to the applied voltage and the second to model the mechanical response of the structure due to the increase in temperature. These models have been developed using ANSYS for both thermal response and structural response. Consolidation of FEA (finite element analysis) results has been carried out using an ANN (artificial neural network) in MATLAB. It is seen that an ANN can be successfully employed to interpolate and predict FEA results, thus avoiding necessity of running FEA code for every new case. Furtheroptimization of geometry for maximum actuation length has been carried out using a GA (genetic algorithm) in MATLAB. The results of the GA were verified against the ANN and FEA results.


2019 ◽  
Vol 22 (15) ◽  
pp. 3234-3248
Author(s):  
Xi Wang ◽  
Ruo-qiang Feng ◽  
Gui-rong Yan ◽  
Bao-chen Zhu ◽  
Feng-cheng Liu

The cable-stiffened lattice shell is a new structural system for its translucence and lighting. This article discusses the effect of the connections’ behavior and geometric imperfection on the structural stability and reveals the buckling mechanism of the cable-stiffened lattice shell. The spring stiffness for bolted connections of cable-stiffened lattice shells is deduced from the spring in series model. The buckling mechanism of cable-stiffened lattice shells with three types of joints have been studied based on the prototypical static experiments of bolted connections. The decrease of bolted connections’ stiffness would lead to the change in the displacement distribution for the lattice shell under its ultimate load. The buckling loads and initial structural stiffness of cable-stiffened lattice shells with shim-strengthened bolted joints are approximately 80% of those for cable-stiffened lattice shells with rigid joints. The result indicates that the buckling loads of cable-stiffened lattice shells with bolted connections decrease much more slowly than the decrease of bolted connections’ stiffness. The cable-stiffened lattice shell with SBP connections is more sensitive to the initial geometric imperfection. Finally, a formula has been proposed for estimating buckling loads of elliptic paraboloid cable-stiffened lattice shells with bolted connections.


Fire ◽  
2019 ◽  
Vol 2 (2) ◽  
pp. 19 ◽  
Author(s):  
Luciano Santarpia ◽  
Simone Bologna ◽  
Virgilio Ciancio ◽  
Iacopo Golasi ◽  
Ferdinando Salata

During a fire in enclosed spaces, having structures with a good level of resistance is very important. The post flashover fire time interval, during which rescue squads operate, is important to verify if the structure can still resist fire for an acceptable time interval. This can be determined through the REI value. Hence, the way the fire develops must be examined together with the trend of the temperature that might guarantee that the structure will resist the heat flux released during the combustion. This article examines and compares, through a case study, the most important methods for analysis of the fire risk: the prescriptive approach and the simplified performance-based approach. The performance-based method (more suitable for the actual planning demand with respect to the more cautious prescriptive approach) is affected by the parameters influencing its development. The goal of this article is to provide a graph (based on parameters like the type of building, opening factor “O” and fire load “q”) that might be used by designers and architects to carry out the planning phase and adopt fire prevention systems before dealing with the assessments required by the engineering field for the fire risk analysis.


1993 ◽  
Vol 20 (1) ◽  
pp. 107-119 ◽  
Author(s):  
S. F. Ng ◽  
M. S. Cheung ◽  
H. M. Hachem

To better understand the behaviour of curved box girder bridges in resisting eccentric design truck loads, and the influence of plan curvature on the structural response, a model study was conducted at the University of Ottawa. In this study, the elastic response of a curved composite box girder bridge model was evaluated experimentally and confirmed analytically using the finite element method. Analytical predictions of both vertical displacements and normal stresses at critical sections compared fairly well with those evaluated experimentally. The isoparametric thin shell element employed in the analysis proved to be versatile and provided an accurate representation of the various structural components of a curved box girder bridge. Despite the eccentric nature of the applied OHBDC design truck loads and the bridge plan curvature, it was evident that in resisting the applied live loads, the girders at critical sections share equal proportions of the applied bending moments. Key words: bridge, curved, cellular, composite, eccentric loads, static, linear, experimental, finite element.


2014 ◽  
Vol 2014 ◽  
pp. 1-18
Author(s):  
G. Muthukumar ◽  
Manoj Kumar

Shear walls have been conferred as a major lateral load resisting element in a building in any seismic prone zone. It is essential to determine behavior of shear wall in the preelastic and postelastic stage. Shear walls may be provided with openings due to functional requirement of the building. The size and location of opening may play a significant role in the response of shear walls. Though it is a well known fact that size of openings affects the structural response of shear walls significantly, there is no clear consensus on the behavior of shear walls under different opening locations. The present study aims to study the dynamic behavior of shear walls under various opening locations using nonlinear finite element analysis using degenerated shell element with assumed strain approach. Only material nonlinearity has been considered using plasticity approach. A five-parameter Willam-Warnke failure criterion is considered to define the yielding/crushing of the concrete with tensile cutoff. The time history responses have been plotted for all opening cases with and without ductile detailing. The analysis has been done for different damping ratios. It has been observed that the large number of small openings resulted in better displacement response.


Sign in / Sign up

Export Citation Format

Share Document