Field Measurements of Dynamic Characteristics and Wind-Induced Response of a Large-Span Roof Structure

2011 ◽  
Vol 243-249 ◽  
pp. 5349-5355 ◽  
Author(s):  
Ji Yang Fu ◽  
An Xu ◽  
Jiu Rong Wu

This paper presents some selected results obtained from the field measurements of wind effects on Guangzhou International Sports Arena (GISA) during the passage of Typhoon Fanapi in September, 2010. The field data such as wind speed, wind direction and acceleration responses, etc., were simultaneously and continuously recorded during the typhoon. The measured acceleration data are analyzed to obtain the information on dynamic characteristics and wind-induced response of the large-span roof structure. The first four natural frequencies and vibration mode shapes of the roof are identified on the basis of the field measurements using the stochastic subspace identification (SSI) method and comparisons with those calculated from the computational model of the roof are made. The damping ratios of the roof are also identified by the SSI method and compared with those estimated by the random decrement method, and the amplitude-dependent damping characteristics are presented and discussed. Furthermore, the field measurement results are compared with the wind tunnel test results to examine the accuracy of the model test results and the adequacy of the techniques used in wind tunnel tests.

2013 ◽  
Vol 405-408 ◽  
pp. 1036-1040
Author(s):  
Fei Liu ◽  
Zhi Qiang Zhang ◽  
Zi Fen Fang

A large number of buildings with large-span or complex-shape have come to the fore in recent years. To these structures, wind load tends to be control load in the structural design. Shape coefficient of wind load which Chinese load code for the design of building structures can provide is extremely limited due to complex-shape of long-span space structures, therefore carrying our related study is of great practical significance. Yancheng Financial Center model is established in this paper based on ETABS software. The acquired date in the use of wind tunnel test is to simulate wind load which is on the structure and to analysis stress distribution of critical element in order to ensure safety and applicability of structures. This paper mainly covers wind tunnel test, equivalent static wind load, and wind-induced response, etc.


2012 ◽  
Vol 166-169 ◽  
pp. 234-238
Author(s):  
Qin Hua Wang ◽  
Bi Qing Shi ◽  
Le Le Zhang

In this paper, wind tunnel test of a large-span roof structure is firstly introduced. Secondly, data processing on synchronous multi-spots pressure measurement test is given. Wind pressure distribution is calculated by using the method mentioned in this paper. Some results and conclusion are useful for design of large-span roof structure.


2016 ◽  
Vol 7 (2) ◽  
pp. 131-138
Author(s):  
Ivransa Zuhdi Pane

Data post-processing plays important roles in a wind tunnel test, especially in supporting the validation of the test results and further data analysis related to the design activities of the test objects. One effective solution to carry out the data post-processing in an automated productive manner, and thus eliminate the cumbersome conventional manual way, is building a software which is able to execute calculations and have abilities in presenting and analyzing the data in accordance with the post-processing requirement. Through several prototype development cycles, this work attempts to engineer and realize such software to enhance the overall wind tunnel test activities. Index Terms—software engineering, wind tunnel test, data post-processing, prototype, pseudocode


2021 ◽  
Vol 11 (8) ◽  
pp. 3315
Author(s):  
Fabio Rizzo

Experimental wind tunnel test results are affected by acquisition times because extreme pressure peak statistics depend on the length of acquisition records. This is also true for dynamic tests on aeroelastic models where the structural response of the scale model is affected by aerodynamic damping and by random vortex shedding. This paper investigates the acquisition time dependence of linear transformation through singular value decomposition (SVD) and its correlation with floor accelerometric signals acquired during wind tunnel aeroelastic testing of a scale model high-rise building. Particular attention was given to the variability of eigenvectors, singular values and the correlation coefficient for two wind angles and thirteen different wind velocities. The cumulative distribution function of empirical magnitudes was fitted with numerical cumulative density function (CDF). Kolmogorov–Smirnov test results are also discussed.


2019 ◽  
Vol 52 (12) ◽  
pp. 128-133
Author(s):  
Yoshiro Hamada ◽  
Kenichi Saitoh ◽  
Noboru Kobiki

2016 ◽  
Vol 66 (4) ◽  
pp. 34-39 ◽  
Author(s):  
Dijana Damljanovic ◽  
Djordje Vukovic ◽  
Aleksandar Vitic ◽  
Jovan Isakovic ◽  
Goran Ocokoljic

1999 ◽  
Author(s):  
Lewis B. Scherer ◽  
Christopher A. Martin ◽  
Mark N. West ◽  
Jennifer P. Florance ◽  
Carol D. Wieseman ◽  
...  

1997 ◽  
Author(s):  
Lewis B. Scherer ◽  
Christopher A. Martin ◽  
Kari Appa ◽  
Jayanth N. Kudva ◽  
Mark N. West

2018 ◽  
Vol 2018 ◽  
pp. 1-14
Author(s):  
Xianglei Wei ◽  
An Xu ◽  
Ruohong Zhao

The traditional wind-induced response analysis of high-rise buildings conventionally considers the wind load as a stationary stochastic process. That is, for a certain wind direction angle, the reference wind speed (usually refers to the mean wind speed at the building height) is assumed to be a constant corresponding to a certain return period. Combined with the recorded data in wind tunnel test, the structural response can be computed using the random vibration theory. However, in the actual typhoon process, the average wind speed is usually time-variant. This paper combines the interval process model and the nonrandom vibration analysis method with the wind tunnel test and proposes a method for estimating the response boundary of the high-rise buildings under nonstationary wind loads. With the given upper and lower bounds of time-variant wind excitation, this method can provide an effective calculation tool for estimating wind-induced vibration bounds for high-rise buildings under nonstationary wind load. The Guangzhou East tower, which is 530 m high and the highest supertall building in Guangzhou, China, was taken as an example to show the effectiveness of the method. The obtained boundary response can help disaster prevention and control during the passage of typhoons.


Sign in / Sign up

Export Citation Format

Share Document