Considering the Effect of Infilled Wall in Frame Structure Based on Reinhorn-Valle Damage Model on Earthquake Damage Analysis

2011 ◽  
Vol 255-260 ◽  
pp. 2471-2477 ◽  
Author(s):  
Jun Lin Chen ◽  
Ze Yun Wang ◽  
Jiang Ren ◽  
Li Zhang

Infilled wall is usually used to separate the housing space and it has greatly affected the structural dynamic characteristics. Considering the infilled wall and the frame structure working together, the structure's response under the earthquake is simulated. In this paper, taking the stiffness, strength degradation and pinching effect of structural elements together into account, the authors adopt Reinhorn-Valle damage model to conduct earthquake damage analysis. The result shows that the infilled wall can mitigate earthquake’s damage of main structural component effectively.

2000 ◽  
Author(s):  
Masaaki Okuma ◽  
Ward Heylen ◽  
Hisayoshi Matsuoka ◽  
Paul Sas

Abstract This paper presents the result of using an experimental spatial matrix identification method to predict the dynamics of a frame structure under a different boundary condition. The single-input-multiple-output frequency response functions of the test structure under the free-free boundary condition are measured by hammer testing. Using the FRFs, a set of spatial matrices is determined to represent its structural dynamic characteristics by the method. Then, using the identified spatial matrices, the dynamic characteristics of the test structure under the boundary condition of clamping 4 points is predicted. The prediction is practically accurate. The result of the prediction demonstrates that the spatial matrices identified by the method can be used for structural modification and substructure synthesis in the field of computer aided mechanical engineering.


2001 ◽  
Vol 123 (3) ◽  
pp. 390-394 ◽  
Author(s):  
Masaaki Okuma ◽  
Ward Heylen ◽  
Hisayoshi Matsuoka ◽  
Paul Sas

This paper presents the results of using an experimental spatial matrix identification method to predict the dynamics of a frame structure under various boundary conditions. The single-input-multiple-output frequency response functions (FRFs) of the test structure under the free-free boundary condition are measured by hammer testing. Using the FRFs, a set of spatial matrices is constructed in order to represent the structural dynamic characteristics of the system by the new method. Using the spatial matrices, the dynamic characteristics of the test structure under the boundary condition of clamping 4 points is predicted. The prediction is adequately accurate for practical application. The results of the prediction demonstrate that the spatial matrices identified by this method can be used for structural modification and substructure synthesis in the field of computer-aided mechanical engineering.


2021 ◽  
pp. 107754632110058
Author(s):  
Qi Zhou ◽  
Liangtao Zhao ◽  
Chong Zheng ◽  
Feng Tu

At present, the wind-induced response analysis of an overhead conductor is mainly based on the action of horizontal normal wind. However, for crossing hillsides or extremely strong winds, such a conductor will bear the action of updraft wind, which will change the geometry of the conductor and make its structural dynamic characteristics nonlinear to some extent. In this work, the in-plane and out-of-plane two-dimensional nonlinear equations were established under the action of self-weight and updraft wind. Furthermore, the improved equations of conductor tension and sag were obtained, and the wind-induced vibration response was further investigated. The results showed that the updraft wind caused the nonlinearity of the tension and sag of the overhead conductor, and the nonlinear geometric change significantly affected its resonance response, which exceeded 25% if the wind speed was 50 m/s. In addition, because the proportion of the resonance response in the total wind-induced response was different, the influence of the wind attack angle calculated using the gust response factor method on the gust response factor was slightly larger than that calculated using the the American society of civil engineers method.


2013 ◽  
Vol 438-439 ◽  
pp. 1461-1465 ◽  
Author(s):  
Yuan Bing Cheng ◽  
Kang Wang ◽  
Yong Qiang Ren

In building structure, staircase is more complex and relatively weak. As an important emergency routes when earthquakes and other emergencies (such as fire, explosion, etc.) take place, stairs subject highly evacuation live or seismic load, destruction of the stair caused delay of evacuation and affected the commencement of rescue work, and produced serious injury or death. Investigation of Wenchuan earthquake damage also finds that many stairs broken before the main structure. In the current code for seismic designof building, seismic design advice of stairs was only given instructionally, and specific calculation methods and construction requirements were lacked. Based on the analysis of earthquake destroy of stairs in frame structure, this paper proposes some design requirements of stair.


2017 ◽  
Vol 26 (7) ◽  
pp. e1348
Author(s):  
Charles C. Thiel ◽  
Theodore C. Zsutty

2022 ◽  
Author(s):  
Mingzhen Wang ◽  
Lin Gao ◽  
Zailin Yang

Abstract The seismic damage state of building structure can be evaluated by observing the fundamental period change of structure. Firstly, the fundamental period calculation formula that adapts to the deformation pattern and distribution mode of horizontal seismic action for reinforced concrete frame structure is derived. Secondly, the seismic damage assessment standard of building structure considering period variation is established. Then, the seismic damage assessment method of building structure is constructed. Finally, the seismic damage example is used to verify the established evaluation method. The results show that the established research method has high accuracy and good engineering practicability.


Sign in / Sign up

Export Citation Format

Share Document