Theoretical Studies of the Atomic and Electronic Structure of Mercury/Aluminium Oxide Interface

2011 ◽  
Vol 255-260 ◽  
pp. 2972-2976 ◽  
Author(s):  
Ping He ◽  
Jiang Wu ◽  
Xiu Min Jiang ◽  
Nai Chao Chen

Density-functional theory (DFT) theory is conducted for the structural and electronic features at the Hg/Al2O3 interface by the analysis of optimal structural geometry, partial density of states (PDOS) and difference charge density. The two adsorption sites of on-top and hollow locations according to the symmetry is adopted to construct the associated interfacial models between Hg atom and free surface. The calculated studies show that the oxygen atoms near Hg atom in the Al2O3 surface, for both on-top and hollow sites, have the gathering effect by shifting toward Hg atom. But their interacting electrons at the interface exhibit different statues in terms of the PDOS analysis that there have no evolution tendency to form the bond between associated O and Hg atoms at the on-top site; and the occurrence of Hg-5d and O-2p overlapping orbitals reveals the strong covalent bond existed at the interface. The PDOS curves show that Al atom in the surface is not liable to contribute to the formation of corresponding bonds by mixing its electrons with Hg atom. Meanwhile, the calculated results derived from difference charge density are in good agreement with the PDOS analysis. The calculated results support some advanced atomic investigation on design a new sorbent refined from fly gas, especially improving the mercury removal from the flue gas.

Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1681
Author(s):  
Mingjie Wang ◽  
Guowei Zhang ◽  
Hong Xu ◽  
Yizheng Fu

In this study, the cohesive energy, interfacial energy, electronic structure, and bonding of Mg2Si (111)/Mg3Sb2 (0001) were investigated by using the first-principles method based on density functional theory. Meanwhile, the mechanism of the Mg3Sb2 heterogeneous nucleation potency on Mg2Si grains was revealed. The results indicated that the Mg3Sb2 (0001) slab and the Mg2Si (111) slab achieved bulk-like characteristics when the atomic layers N ≥ 11, and the work of adhesion of the hollow-site (HCP) stacking structure (the interfacial Sb atom located on top of the Si atom in the second layer of Mg2Si) was larger than that of the other stacking structures. For the four HCP stacking structures, the Sb-terminated Mg3Sb2/Si-terminated Mg2Si interface with a hollow site showed the largest work of adhesion and the smallest interfacial energy, which implied the strongest stability among 12 different interface models. In addition, the difference in the charge density and the partial density of states indicated that the electronic structure of the Si-HCP-Sb interface presented a strong covalent, and the bonding of the Si-HCP-Mg interface and the Mg-HCP-Sb interface was a mixture of a covalent bond and a metallic bond, while the Mg-HCP-Mg interfacial bonding corresponded to metallicity. As a result, the Mg2Si was conducive to form a nucleus on the Sb-terminated-hollow-site Mg3Sb2 (0001) surface, and the Mg3Sb2 particles promoted the Mg2Si heterogeneous nucleation, which was consistent with the experimental expectations.


Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 2048
Author(s):  
Jia Du ◽  
Leilei Fan ◽  
Qinghe Wang ◽  
Fanfei Min

The development of clay adsorption materials with high Cr(III) removal capacities requires an understanding of the adsorption mechanism at the atomic level. Herein, the mechanisms for the adsorption of Cr(OH)2+, Cr(OH)2+, and Cr(OH)3 on the (001) and (010) surfaces of illite were studied by analyzing the adsorption energies, adsorption configurations, charges, and state densities using density functional theory (DFT). The adsorption energies on the illite (010) and (001) surfaces decrease in the order: Cr(OH)2+ > Cr(OH)2+ > Cr(OH)3. In addition, the energies associated with adsorption on the (010) surface are greater than those on the (001) surface. Further, the hydrolysates are highly active and can provide adsorption sites for desorption agents. The silica (Si–O) ring on the illite (001) surface can capture Cr(OH)n(3−n)+ (n = 1–3). In addition, both Cr(OH)2+ and Cr(OH)2+ form one covalent bond between Cr and surface OS1 (Cr–OS1), whereas the hydroxyl groups of Cr(OH)3 form three hydrogen bonds with surface oxygens. However, increasing the number of hydroxyl groups in Cr(OH)n(3−n)+ weakens both the covalent and electrostatic interactions between the adsorbate and the (001) surface. In contrast, the Cr in all hydrolysates can form two covalent Cr–OSn (n = 1–2) bonds to the oxygens on the illite (010) surface, in which Cr s and O p orbitals contribute to the bonding process. However, covalent interactions between the cation and the (010) surface are weakened as the number of hydroxyl groups in Cr(OH)n(3−n)+ increases. These results suggest that the illite interlayer can be stripped to expose Si–O rings, thereby increasing the number of adsorption sites. Furthermore, regulating the generated Cr(III) hydrolysate can increase or weaken adsorption on the illite surface. Based on these findings, conditions can be determined for improving the adsorption capacities and optimizing the regeneration performance of clay mineral materials.


Minerals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 930
Author(s):  
Mingzhu Huangfu ◽  
Jiaxin Li ◽  
Xi Zhang ◽  
Yiming Hu ◽  
Jiushuai Deng ◽  
...  

Cu2+ exhibited a good activation effect on specularite. However, its microscopic activation mechanism needs further study. Additionally, Cu2+ was mainly present in the flotation solution as Cu2+, Cu(OH)+, and Cu(OH)2 at pH = 7. Therefore, density functional theory (DFT) calculations were used to investigate the effect of Cu species such as Cu2+, Cu(OH)+, and Cu(OH)2 adsorbed on the crystal structure and properties of the specularite (0 0 1) surface. The adsorption mechanism of different Cu components on the surface was also further clarified by the analyses of the adsorption model, adsorption energy, partial density of states (PDOS), charge transfer, and bond properties. In addition, the obtained results are discussed. Based on the obtained results, it can be concluded that the geometric structure and electronic properties on the surface changed after adsorbing Cu components and that the O3–Fe1–O1 structure was more susceptible to the adsorbates. The adsorption engines results show that Cu components could be spontaneously adsorbed onto the specularite (0 0 1) surface with adsorption energies of −0.76, −0.85, and −1.78 eV, corresponding to Cu2+, CuOH+, and Cu(OH)2, respectively. Therefore, the adsorption stability of the Cu species on the specularite surface increased in the order of Cu2+ < Cu(OH)+ < Cu(OH)2. Additionally, the adsorption sites for Cu species on the surface were different. Cu2+ interacted mainly with O atoms on the surface, forming Cu–O complexes, while Cu(OH)+ and Cu(OH)2 acted mainly through the O atom of –OH, interacting with Fe atoms to form Cu–O–Fe complexes. The formation of Cu–O and Cu–O–Fe complexes increased the adsorption sites for sodium oleate, with more hydrophobic species being generated to improve the floatability of specularite.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1032
Author(s):  
Anirban Naskar ◽  
Rabi Khanal ◽  
Samrat Choudhury

The electronic structure of a series perovskites ABX3 (A = Cs; B = Ca, Sr, and Ba; X = F, Cl, Br, and I) in the presence and absence of antisite defect XB were systematically investigated based on density-functional-theory calculations. Both cubic and orthorhombic perovskites were considered. It was observed that for certain perovskite compositions and crystal structure, presence of antisite point defect leads to the formation of electronic defect state(s) within the band gap. We showed that both the type of electronic defect states and their individual energy level location within the bandgap can be predicted based on easily available intrinsic properties of the constituent elements, such as the bond-dissociation energy of the B–X and X–X bond, the X–X covalent bond length, and the atomic size of halide (X) as well as structural characteristic such as B–X–B bond angle. Overall, this work provides a science-based generic principle to design the electronic states within the band structure in Cs-based perovskites in presence of point defects such as antisite defect.


2010 ◽  
Vol 25 (6) ◽  
pp. 1030-1036 ◽  
Author(s):  
Pengxian Lu ◽  
Zigang Shen ◽  
Xing Hu

To investigate the effects of substituting Ag and Sb for Pb on the thermoelectric properties of PbTe, the electronic structures of PbTe and AgPb18SbTe20 were calculated by using the linearized augmented plane wave based on the density-functional theory of the first principles. By comparing the differences in the band structure, the partial density of states (PDOS), the scanning transmission microscope, and the electron density difference for PbTe and AgPb18SbTe20, we explained the reason from the aspect of electronic structures why the thermoelectric properties of AgPb18SbTe20 could be improved significantly. Our results suggest that the excellent thermoelectric properties of AgPb18SbTe20 should be attributed in part to the narrowing of its band gap, band structure anisotropy, the much extrema and large DOS near Fermi energy, as well as the large effective mass of electrons. Moreover, the complex bonding behaviors for which the strong bonds and the weak bonds are coexisted, and the electrovalence and covalence of Pb–Te bond are mixed should also play an important role in the enhancement of the thermoelectric properties of the AgPb18SbTe20.


Clay Minerals ◽  
2018 ◽  
Vol 53 (3) ◽  
pp. 393-402 ◽  
Author(s):  
Jian Zhao ◽  
Wei Gao ◽  
Zhi-Gang Tao ◽  
Hong-Yun Guo ◽  
Man-Chao He

ABSTRACTKaolinite can be used for many applications, including the underground storage of gases. Density functional theory was employed to investigate the adsorption of hydrogen molecules on the kaolinite (001) surface. The coverage dependence of the adsorption sites and energetics was studied systematically for a wide range of coverage, Θ (from 1/16 to 1 monolayer). The three-fold hollow site is the most stable, followed by the bridge, top-z and top sites. The adsorption energy of H2 decreased with increasing coverage, thus indicating the lower stability of surface adsorption due to the repulsion of neighbouring H2 molecules. The coverage has obvious effects on hydrogen adsorption. Other properties of the H2/kaolinite (001) system, including the lattice relaxation and changes of electronic density of states, were also studied and are discussed in detail.


Author(s):  
Abdullahi Lawal ◽  
Amiruddin Shaari

Topological insulators are layered materials via van der Waals interactions with hexagonal unit cell similar to that of graphene. The exciting features of Bi2Se3 and Bi2Te3 topological insulators their zero band gap surface states exhibiting linear dispersion at the Fermi energy. We present here first principles study pertaining to electronics properties of Bi2Se3 and Bi2Te3 compound with and without spin-orbit interaction using density functional theory (DFT). Total density of state (DOS), partial density of state (PDOS) and band structure where determined by Quantum-Espresso simulation package which uses plane wave basis and pseudopotential for the core electrons, while treating exchange-correlation potential with generalized gradient approximation (GGA). From our computations, the obtained results were found to be consistent with the available experimental results. 


2004 ◽  
Vol 18 (08) ◽  
pp. 1191-1202
Author(s):  
ŞENAY KATıRCıOĞLU

The decomposition of GeH 4 on Si (100)(2×1) was investigated on different adsorption models of fragments using density functional theory method. The most probable adsorption model of fragments corresponding to the growth steps of SiGe film has been obtained by geometry optimization and single value total energy calculations. The relative adsorption energies of GeH 3, GeH 2 and GeH have been found to be -5.6, -5.1, and -4.5 eV for their most probable adsorption models respectively. It has been found that, the asymmetric dimer bond rows of Ge on Si (100) surface can be constructed by following the adsorption models corresponding to the relative adsorption energies of GeH 3, GeH 2 and GeH .


2019 ◽  
Vol 41 (6) ◽  
pp. 932-932
Author(s):  
Mengmeng Wu Mengmeng Wu ◽  
Rongkai Pan Rongkai Pan ◽  
Jilei Liang Jilei Liang ◽  
Guohai Zhou Guohai Zhou ◽  
Li Ma and Chunyu Zhang Li Ma and Chunyu Zhang

The γ˝ phase (Mg4GdZn) precipitate in Mg-Gd-Zn alloy was calculated via first-principle density functional theory within the generalized gradient approximation. Through structure optimization of full relaxation, the lattice parameters were theoretically obtained, and the calculated Mg4GdZn is the most energetically stable in view of the formation energy. Independent elastic constants were also calculated, illustrating the calculated Mg4GdZn is mechanically stable. The shear modulus, polycrystalline bulk modulus, Poisson ratio, and Young’s modulus of Mg4GdZn were calculated via the Voigt-Reuss-Hill approximation. Elastic anisotropy and ductility were analyzed in details. Seen from their charge density distribution and electronic density of states, both metallic bond and covalent bond were found in Mg4GdZn.


Sign in / Sign up

Export Citation Format

Share Document