Effect of Nano-TiO2 Antibacterial Treatment on Mechanical Properties of Cotton Fabric

2011 ◽  
Vol 287-290 ◽  
pp. 2557-2560
Author(s):  
Yan Ping Jin ◽  
Zai Fa Pan ◽  
Wu Sheng Li ◽  
Min Zhi Chen ◽  
Feng Yuan Zou

In order to have a better understanding of mechanical properties of the Nano-TiO2 antibacterial cotton fabric, FAST system was used to measure the compression, bending, shearing, extension and other low stress mechanical properties of cotton fabrics with and without treated by Nano-TiO2 antibacterial. The structural parameter and dimensional stability are also tested. Results indicated that weight, weft density, surface thickness, bending, formability, shearing and relaxation shrinkage of weft direction are all increased slightly, while shearing at warp 45°, relaxation shrinkage of warp direction and hygral expansion decreased. As a whole, most of the mechanical properties are still within the normal range and some is even better.

2017 ◽  
Vol 21 (2) ◽  
pp. 146-158 ◽  
Author(s):  
Pragnya Kanade ◽  
Bharat H. Patel

Purpose The main purpose of taking up this work was to see the influence of metallic nanoparticles on various fabric properties. This paper emphasizes on mechanical, aesthetic and anti-bacterial properties of the polyester, cotton and polyester cotton-blended fabric samples. Design/methodology/approach Three fabrics, 100 per cent polyester, 100 per cent cotton and polyester cotton-blended (50:50), were procured from the market. They were subjected to mild washing treatment so that the fabrics could be impregnated with copper (Cu) nanoparticles following standard procedure. The characterization of Cu nano-loaded textiles has been done using various techniques such as scanning electron microscopy for surface morphology, X-ray fluorescence spectrometer for elemental analysis and Fourier transform infrared spectroscopy for chemical composition. However in this paper, the focus is on various fabric properties and influence of this treatment on them. Antimicrobial activity was measured as per AATCC 100 quantitative method. Findings The structural properties showed changes but not major ones. The impregnation of Cu nanoparticles is nothing but a chemical treatment, and it is not uncommon to find reduction in the mechanical properties of the specimen. Here also, the mechanical properties were studied but did not reveal any significant change. The aesthetic properties for cotton fabrics showed an improvement. Improvement in the anti-bacterial activity was observed for all the fabric samples but the improvement in cotton fabric is worth mentioning. Thus, nano treatment imparts anti-bacterial property without hampering the mechanical properties of the parent textiles. Research limitations/implications It is usual to find changes in the various properties of the materials subjected to nano treatment or treatment of any sort. Though the fabric samples were subjected to similar treatment, the quantity of nanoparticles taken up by each of them was different. The reason behind this could be the difference in the crystallinity of the fabric samples. Polyester fabric showed the highest resistance, as it was least affected by the nano treatment given. Cotton fabrics composed of cotton fibers are amorphous in nature, hence showed better take-up and hence were more affected by the said treatment. Practical implications Cotton fabrics are the most favored fabric, especially in regions with hot climatic conditions. Even though these fabrics are very sought after, they have a major drawback related to the aesthetic appeal of the fabric. These fabrics have very poor resistance to the crease formation, as well as their ability to recover from the external deformation. But the study conducted on the fabric samples has shown favorable results for the cotton fabric. A significant improvement in their aesthetic and anti-bacterial activity was found. At present, textiles with nano finishing fall in niche market due to its higher cost. But finishing with in-house Cu nanoparticles may open up hygiene textiles for consumers at affordable rates. Social implications Cotton is still the most popular natural fiber in most of the tropical and sub-tropical regions. People located in these places have a natural urge to wear fabrics made from cotton fibers. Due to the hot weather, sweating is natural. However, this tends to keep the skin in humid state resulting in various skin problems, as cotton is also prone to bacterial attack. But this work has shown positive results, meaning to say that cotton fabrics show improved resistance to the bacterial activity. Hence, its suitability for hygiene applications may soon become a reality. Originality/value It is true that a lot of work is being reported on nano materials and their application to textiles for various reasons. Recently, many reports are available related to finishing of textiles using nanoparticles. However, most of the researchers are using silver nanoparticles for the same. In this work, use of in-house Cu nanoparticles has been done to treat fabric samples, which is more economical than silver nano. Also quantity required to meet desired property with Cu nanoparticles is less than the conventional treatment. This work is a sincere attempt to prepare hygienic common textiles at economical rates using continuous application technique which offers durable efficacy against human pathogenic bacterium.


2018 ◽  
Vol 89 (12) ◽  
pp. 2376-2394 ◽  
Author(s):  
Suhyun Lee ◽  
Chung Hee Park

In this study, polypyrrole deposition and a superhydrophobic coating were applied to cotton fabrics to develop a self-cleaning and conductive fabric with electric heating performance. The binary oxidants ammonium peroxodisulfate and ferric chloride were introduced during the polymerization to adjust the size of the polypyrrole particles for creating diverse nano-scale roughness on the surface of the cotton fabrics and to prevent degradation in the mechanical properties of textiles. The in-situ polymerization of polypyrrole that introduced the binary oxidants succeeded in depositing polypyrrole particles on the surface of the cotton fabrics. Binary oxidants formed small polypyrrole particles contrary to the single oxidants. In terms of conductivity, the surface resistivity decreased as the FeCl3 ratio in the oxidants increased. The binary oxidants led to a similar level of conductivity even though the amount of polypyrrole deposition was less than that in the case of the single oxidant. The electrical heating performance improved as the surface resistance was decreased, resulting in an up to 20℃ increase in the surface temperature. On the other hand, the duration of the electro-heating effect was shorter with higher surface temperature. In terms of wettability, a superhydrophobicity with a contact angle of 150° or higher and a shedding angle of less than 10° was achieved under all oxidant conditions because of the nano-scale roughness caused by polypyrrole. Polypyrrole deposition reduced the tensile strength of the cotton fabric and increased its stiffness. The binary oxidants exhibited smaller changes in the mechanical properties of the textile than the single oxidants.


2014 ◽  
Vol 18 (3) ◽  
pp. 69-80 ◽  
Author(s):  
R. Prathiba Devi ◽  
L. Sasikala ◽  
R. Rathinamoorthy ◽  
Dr. J. Jeyakodi Moses

The effect of enzyme treatments with consecutive softening by the use of silicone – polyurethane on low stress mechanical properties and hand values of jute/cotton union fabric have been studied on the Kawabata evaluation system (KES). The results indicate that the enzyme treated, silicone – polyurethane finished fabric has significant (p<0.05) improvement in tensile resilience, fabric extensibility, compressional resistance and friction co efficient, whereas fabric thickness, linearity of tensile, surface roughness, bending and shear rigidity and their hysteresis are reduced compared to the untreated fabric. Under the Kawabata system, the Koshi (stiffness) value of the finished fabric is decreased by 1-9%. Numeri (smoothness) and Fukurami (fullness and softness) values are increased by 11-20% and 3-4% respectively compared to the untreated fabric. The variation in primary hand values are significant (p<0.05). The total hand value (THV) is also increased by 6% and 44% for the case of 40/60 and 50/50 jute/cotton union fabrics, respectively. This study confirms the possible usage of jute/cotton fabric in the apparel segment.


2018 ◽  
Vol 27 (1) ◽  
pp. 127-134
Author(s):  
Sushma Rani ◽  
Parveen Punia

Sign in / Sign up

Export Citation Format

Share Document