Effect of softener in home laundering of cotton fabric: a study of low-stress mechanical properties

Cellulose ◽  
2018 ◽  
Vol 25 (10) ◽  
pp. 6161-6173
Author(s):  
C. W. Kan ◽  
T. C. Lau
2011 ◽  
Vol 287-290 ◽  
pp. 2557-2560
Author(s):  
Yan Ping Jin ◽  
Zai Fa Pan ◽  
Wu Sheng Li ◽  
Min Zhi Chen ◽  
Feng Yuan Zou

In order to have a better understanding of mechanical properties of the Nano-TiO2 antibacterial cotton fabric, FAST system was used to measure the compression, bending, shearing, extension and other low stress mechanical properties of cotton fabrics with and without treated by Nano-TiO2 antibacterial. The structural parameter and dimensional stability are also tested. Results indicated that weight, weft density, surface thickness, bending, formability, shearing and relaxation shrinkage of weft direction are all increased slightly, while shearing at warp 45°, relaxation shrinkage of warp direction and hygral expansion decreased. As a whole, most of the mechanical properties are still within the normal range and some is even better.


2014 ◽  
Vol 18 (3) ◽  
pp. 69-80 ◽  
Author(s):  
R. Prathiba Devi ◽  
L. Sasikala ◽  
R. Rathinamoorthy ◽  
Dr. J. Jeyakodi Moses

The effect of enzyme treatments with consecutive softening by the use of silicone – polyurethane on low stress mechanical properties and hand values of jute/cotton union fabric have been studied on the Kawabata evaluation system (KES). The results indicate that the enzyme treated, silicone – polyurethane finished fabric has significant (p<0.05) improvement in tensile resilience, fabric extensibility, compressional resistance and friction co efficient, whereas fabric thickness, linearity of tensile, surface roughness, bending and shear rigidity and their hysteresis are reduced compared to the untreated fabric. Under the Kawabata system, the Koshi (stiffness) value of the finished fabric is decreased by 1-9%. Numeri (smoothness) and Fukurami (fullness and softness) values are increased by 11-20% and 3-4% respectively compared to the untreated fabric. The variation in primary hand values are significant (p<0.05). The total hand value (THV) is also increased by 6% and 44% for the case of 40/60 and 50/50 jute/cotton union fabrics, respectively. This study confirms the possible usage of jute/cotton fabric in the apparel segment.


2016 ◽  
Vol 88 (4) ◽  
pp. 467-479 ◽  
Author(s):  
Ka-yan Yim ◽  
Chi-wai Kan

Fabric hand is an indispensable characteristic for the selection of fabric and product development and the buying consideration for manufacturers and consumers. However, there is little comprehensive work on the hand feel property of warp-knitted fabrics due to the mainstream natural fibers (cotton, wool and silk) and other fabric structures (woven, weft-knitted and nonwoven). The increasing potential for the wide variety of applications and development of warp-knitted fabrics is not only because its fabric hand gives better determination for fabric marketing, but also because it provides extensive scope for fabric performance and appearance. This paper reports an experimental study on the integrated fabric hand behavior of a series of warp-knitted fabrics made for various apparel applications, such as sportswear, lingerie and leisure wear. These 105 fabrics were produced by varying different physical parameters, including fabric weight and fabric thickness. The Kawabata Evaluation System for Fabric (KES-F) was employed to obtain the fabric hand properties (primary hand value and total hand value) related with stiffness, smoothness and softness. All low-stress mechanical properties and fabric hand values from the testing results were used to verify the applicability of the KES-F on warp-knitted fabrics and to analyze the relationships of fabric parameters and hand characteristics. The results indicate that the KES-F is an appropriate tool to measure the hand attributes of warp-knitted samples, and moderate correlations between physical properties and mechanical behavior were found.


Sign in / Sign up

Export Citation Format

Share Document