low stress mechanical properties
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 9)

H-INDEX

9
(FIVE YEARS 2)

2021 ◽  
pp. 004051752110351
Author(s):  
Shirui Liu ◽  
Linlin Ma ◽  
Xujiao Ding ◽  
Kelly C Wong ◽  
Xiao-Ming Tao

This article presents a systematic investigation of the knitted fabrics made from various blends of intrinsically antimicrobial poly (hydroxybutyrate-co-hydroxyvalerate)/polylactide acid filaments and cotton staple fibers. The effects of blend yarn, fabric structures, and distributions of fibers on antimicrobial properties of resultant yarns and knitted fabrics were studied. The relationships among fiber distribution, blend ratio, and anti-microbial properties were experimentally determined for three blend yarns made by sirofil, wrap-spun, and core-spun spinning technologies. The fabrics made from the sirofil-spun and wrap-spun yarns show better anti-microbial effects against Staphylococcus aureus, Klebsiella pneumoniae, and Candida albicans than those of the core-spun yarns, according to the standard AATCC100-2012 Antibacterial Finishes on Textile Materials (American Association of Textile Chemists and Colorists, 2012). An alternative blending method of co-knitting of the pure poly (hydroxybutyrate-co-hydroxyvalerate)/polylactide acid yarns and cotton yarns achieved excellent antimicrobial effects. Furthermore, a wearing trial of underwear made from the blended knitted fabrics was conducted in a nursing home. The wearing comfort of the garments, low-stress mechanical and surface properties of fabrics were evaluated objectively by the Kawabata Evaluation System of Fabric (KESF) system and subjectively by a questionnaire survey to users.


Author(s):  
Manoj Kumar ◽  
Sanjeev R. Shukla ◽  
A. Arputharaj ◽  
Sujata Saxena ◽  
Sharmila Patil ◽  
...  

2020 ◽  
Vol 15 ◽  
pp. 155892502092853
Author(s):  
Alemayehu Assefa ◽  
Nalankilli Govindan

The effect of different stitch combinations, namely, knit, tuck and miss stitches, on some of the physical properties of single jersey derivative fabrics have been studied. Fabrics which are in common commercial use in the textile industry were selected, and they are used as clothing fabrics. Knitted fabrics from 100% cotton yarn of 19.67 Tex on circular knitting machines were used in the study. The effect of knit structure on areal density, fabric thickness, air permeability, drape ability, stretch and recovery, shrinkage, and low-stress mechanical properties are investigated, and it was found that these properties are significantly affected by loop shape or knit structure, even though other knitting parameters remained the same. It was also found that the presence of tuck and float stitches for a given structure have a significant effect on fabric drape ability, width-wise extensibility, length-wise shrinkage, thickness, areal density and low-stress mechanical properties.


2019 ◽  
Vol 31 (3) ◽  
pp. 403-414
Author(s):  
Md Samsu Alam ◽  
Abhijit Majumdar ◽  
Anindya Ghosh

Purpose Bending and shear rigidities of woven fabrics depend on fibre, yarn and fabric-related parameters. However, there is lack of research efforts to understand how bending and shear rigidities change in woven fabrics having similar areal density. The purpose of this paper is to investigate the change in bending and shear rigidities in plain woven fabrics having similar areal density. Design/methodology/approach A total of 18 fabrics were woven (9 each for 100 per cent cotton and 100 per cent polyester) keeping the areal density same. Yarns of 20, 30 and 40 Ne were used in warp and weft wise directions and fabric sett was adjusted to attain the desired areal density. Findings When warp yarns become finer, keeping weft yarns same, bending rigidity remains unchanged but shear rigidity increases in warp wise direction. When weft yarns are made finer, keeping the warp yarns same, both the bending and shear rigidities of fabric increase in warp wise direction. Similar results for fabric bending and shear rigidities were obtained in transpose direction. There is a strong association between fabric shear rigidity and number of interlacement points per unit area of fabric even when fabric areal density is same. Originality/value Very limited research has been reported on the low-stress mechanical properties of woven fabrics having similar areal density. A novel attempt has been made in this research work to investigate the bending and shear rigidities of woven fabrics having similar areal density. Besides, it has been shown that it is possible to design a set of woven fabrics having similar bending rigidity but different shear rigidity.


2019 ◽  
Vol 89 (23-24) ◽  
pp. 4842-4857 ◽  
Author(s):  
Nazli Uren ◽  
Ayse Okur

Despite the fact that the tactile comfort of a garment is an important criterion that determines consumers' preferences and has been investigated for almost a century by many researchers, the number of studies regarding tactile comfort of denim fabrics is limited. The aim of this study is to propose suggestions to enhance the tactile comfort of denim fabrics and investigate their efficiency in terms of low-stress mechanical properties and sensory evaluation results. For this purpose, the compressibility, extension ability, bending rigidity and shear rigidity of 51 denim fabrics were experimentally determined. Meanwhile, stiffness–softness, roughness–smoothness and tactile comfort scores were evaluated by consumers and specialists via sensory tests. The effects of the raw material, blend ratio, weaving parameters and washing processes were statistically investigated. Low-stress mechanical properties, particularly biaxial and multiaxial ones, were found to be highly related to the perceived tactile comfort. Statistical investigations highlighted that stone washing is the most effective method to improve the tactile comfort. Nonetheless, the effect of enzyme washing was relatively small. It was observed that the suggested weaving parameters provide a significant improvement in fabric properties. Increasing the ratio of viscose content in polyester/viscose blend weft yarns was quite effective as well.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2466 ◽  
Author(s):  
Melkie Tadesse ◽  
Ladislav Nagy ◽  
Vincent Nierstrasz ◽  
Carmen Loghin ◽  
Yan Chen ◽  
...  

Functional finishing brings an alteration on the mechanical and surface properties of textile materials and henceforth influences the tactile properties. In this work, Kawabata evaluation systems (KES) for fabrics were utilized to notice the changes in the tactile properties of fabrics resulting from different finishing types such as inkjet printing, screen printing, and coating. The effects of functional finishing on the fabric’s tactile property were inconsistent with reference to the course of decrease or increase being dependent on the types of finishes. The findings showed that KES can be employed as a promising tool to sort out the suitable functional finishing types in terms of tactile properties. Amongst the implemented finishing types, inkjet printing offered superior tactile properties with respect to tensile energy (softness), shear rigidity, compressional softness, bending stiffness (drapability), and surface properties. The KES results confirmed that low-stress mechanical properties are strongly associated with the tactile property and might assist as a quality profile data source for guaranteeing the production and development of a virtuous quality product. The result encourages further utilization of the KES for functional fabric tactile property evaluation.


Sign in / Sign up

Export Citation Format

Share Document