Haptic Control for Minimally Invasive Robotic Surgery

2011 ◽  
Vol 291-294 ◽  
pp. 1600-1603 ◽  
Author(s):  
Zhao Hong Xu ◽  
Cheng Li Song ◽  
Shi Ju Yan

Minimally invasive robotic surgery has been investigated in various surgical application due to high accuracy, fine manipulation capability, tele-operation. Haptic feedback plays a significant role in MIS. In this paper, a dynamics model of a haptic robot is established, and PID algorithm is proposed. To prove the proposed method, an experimental system has been developed. Simulations and experiments show proposed methods is an effective method to master-slave MIRS.

2007 ◽  
Vol 1 (3) ◽  
pp. 206-211 ◽  
Author(s):  
Pietro Valdastri ◽  
Keith Houston ◽  
Arianna Menciassi ◽  
Paolo Dario ◽  
Arne Sieber ◽  
...  

This paper reports a miniaturized triaxial force sensorized cutting tool for minimally invasive robotic surgery. This device exploits a silicon-based microelectromechanical system triaxial force sensor that acts as the core component of the system. The outer diameter of the proposed device is less than 3mm, thus enabling the insertion through a 9 French catheter guide. Characterization tests are performed for both normal and tangential loadings. A linear transformation relating the sensor output to the external applied force is introduced in order to have a triaxial force output in real time. Normal force resolution is 8.2bits over a force range between 0N and 30N, while tangential resolution is 7 bits over a range of 5N. Force signals with frequencies up to 250Hz can successfully be detected, enabling haptic feedback and tissue mechanical properties investigation. Preliminary ex vivo muscular tissue cutting experiments are introduced and discussed in order to evaluate the device overall performances.


Sign in / Sign up

Export Citation Format

Share Document