The Research of Impact in Pipe Pile Squeezing Soil to Bearing Capacity of the Pile

2011 ◽  
Vol 291-294 ◽  
pp. 3424-3428
Author(s):  
Jin Xu ◽  
Jing He

This paper are doing responsive and exploratory test of the pile bearing capacity for squeezing soil. In order to provide the basis for determining the ultimate bearing capacity of the pile foundation for the design and construction units.

2020 ◽  
Vol 198 ◽  
pp. 02017
Author(s):  
Zhongju Feng ◽  
Shaofen Bai ◽  
Wu Min ◽  
Jingbin He ◽  
Zhouyi Huang ◽  
...  

In order to study the influence of steep slope-karst coupling on the vertical bearing characteristics of pile foundation, the orthogonal simulation tests of pile foundation under 4 different roof thickness and 5 different slope are carried out by using Marc finite element software, and the correction coefficient of vertical partial bearing capacity of pile foundation according to roof thickness and slope is put forward. The test results show that when the thickness of the roof is more than 3 times the pile diameter, the ultimate bearing capacity of the pile foundation tends to be stable, and the value is about 19% when the slope is 45°; the ultimate bearing capacity of the pile foundation decreases gradually with the increase of the slope, and the reduction reaches 29.83% when the slope is greater than 45°. According to the calculation results, the variation law of vertical partial bearing capacity of pile foundation is analyzed, and the calculation formula of standard value of vertical ultimate bearing capacity of pile foundation in steep slope karst area considering both roof thickness and slope is put forward, and the correction coefficients αi and β are put forward.


2020 ◽  
Vol 28 (3) ◽  
pp. 378
Author(s):  
Rasdinanta Tarigan

Buildings that stand on soft soil usually use a pile foundation. Testing the ultimate bearing capacity of pile foundations in the field is a Pile Driving Analyzer (PDA) tool. Besides being inexpensive to test, the results can also be known quickly. This tool is supported by a software called CAPWAP (CAse Pile Wave Analysis Program).In this paper, a performance comparison of the Pile Driving Analyzer (PDA) and CAPWAP (CAse Pile Wave Analysis Program) software will be presented in producing the ultimate bearing capacity of pile foundations. The results of both will be analyzed in such a way that the causes of the differences in the performance of the Pile Driving Analyzer (PDA) and the CAPWAP software are known.The results obtained show that the performance of the Pile Driving Analyzer (PDA) tool will not be optimal if the energy transferred to the pile foundation is too small. The energy given by the hammer when struck must be in the range of 1% - 2%, if it is smaller then the performance of the tool in producing the ultimate bearing capacity will not be representative. The difference in the ultimate bearing capacity between the PDA device and the CAPWAP software for energy transferred to the pile foundation (EMX) under the specified energy standard is 10.71% - 33.23%. Meanwhile, energy that meets the specified standards has a value between 0.24% - 1.80%.


2012 ◽  
Vol 256-259 ◽  
pp. 531-534
Author(s):  
Jia Tao Wang ◽  
Hong Li Zhao

More detailed information about the bearing capacity and integrity of the pile can be obtained by high strain dynamic test than by dead-load test [1]. Engineering examples show that the bearing capacity of the prestressed pipe pile gradually increase with the growth of the resting time, and the ultimate bearing capacity of the pile can reach up to 2 times more than the initial bearing capacity. Through the study of the time effect mechanism, it is found that the increment of ultimate bearing capacity of the single pile is mainly caused by side soil resistance. The end resistance has little influence on the time effect of bearing capacity of pile.


2011 ◽  
Vol 101-102 ◽  
pp. 228-231
Author(s):  
Jian Ping Jiang

Based on BP neural network, this paper had a prediction on ultimate bearing capacity of prestressed pipe pile. Taking pile diameter, effective pile length, ultimate average value of friction standard value, ultimate average value of end resistance standard value as influences factors, the prediction model of pile bearing capacity based on BP neural network was obtained. It was found that, the average value of absolute value for the relative error of fitting value of pile bearing capacity compared with the observed value for 70 groups of independent variables training BP neural network model was 3.1498%; And the average value of absolute value for the relative error of prediction value of pile bearing capacity compared with the observed value for 10 groups of independent variables validating BP neural network model was 3.50126% whose precision was better than ANFIS’5.32293%. The following conclusion can be drawn that, the prediction model of ultimate bearing capacity of prestressed pipe pile based on BP neural network is feasible.


2011 ◽  
Vol 317-319 ◽  
pp. 2258-2265
Author(s):  
Jian Min Chen ◽  
Xiao Dong Hao ◽  
Zu Chang Song

Based on the present tecnology of pile, a method of compacted forming concrete pile applied in the subsea base is studied. Using the method of finite different the procedure of compacted forming at the end of steel pipe pile has been simulated in the particular geology soil, the effects of the elastic modulus, cohesion, friction and dilation on the compacted behaviour are aquired and the bearing capacity has been calculated. The results show that the ultimate bearing capacity of this pile increases approximate 3 times bigger than the steel pipe pile with the same dimentions, in addition, its curve of Q-S is smooth and ultimate feature point is indistinct, which proves that this tecnology of compacted forming concrete pile is able to increase the bearing capacity prominently.


2018 ◽  
Vol 1 (2) ◽  
pp. 94-99
Author(s):  
Muhammad O Yunus

The pile foundation is one of the deep foundation types commonly used to support building loads when hard soil layers are deeply located. To determine the ultimate bearing capacity of a pile foundation of the load test results, there are several methods commonly used to interpretation test results such as Davisson method, Mazurkiewich method, Chin method, Buttler Hoy method and De Beer method. The aim of this study was to determine the characteristics of soft soil and bakau piles used in the study and to analyze the size of the bearing capacity ultimate of pile foundation that is modeled on a small scale in the laboratory. From the test results of material characteristics of the soil used is organic clay type with medium plasticity with specific gravity 2.75, liquid limit, LL = 50.36% and plasticity index, PI = 13.2%. While the results of testing the characteristics of bakau piles obtained average water content of 21.58%, tensile strength of 18.51 MPa, compressive strength of parallel fiber 23.75 MPa and perpendicular fiber 14.10 MPa, bending strength 106, 22 MPa, and strong split 29.91 MPa. From the result of loading test of the foundation model in the laboratory, it is found that the ultimate bearing capacity of the model without foundation is 41.00 kN with the ultimate settlement of 14.00 mm, the model of the 20 cm long bakau piles foundation is 52.00 kN with the ultimate settlement of 13.00 mm, the foundation model a 30 cm long bakau piles foundation of 54.00 kN with a 10.00 mm ultimate settlement, a 40 cm long bakau piles foundation model of 56.00 kN with an ultimate settlement of 8.50 mm.


2012 ◽  
Vol 166-169 ◽  
pp. 1345-1352
Author(s):  
Jian Bin Zhao ◽  
Chao Xu ◽  
Hui Guo

Vertical ultimate bearing capacity of static pressure pipe pile is influenced by comprehensive factors, such as pile body, soil around pile and construction conditions., and the relationship between the impact factors and ultimate bearing capacity of a single pile is highly complexity and non-linear. This paper is based on collecting the data from static load tests in typical geological conditions of Liao-shen area, construction records, and test pile sites. And then combine analysis of principal component with SVM to analysis the prediction of the single pile’s vertical ultimate bearing capacity. This model can reduce the number of SVM input variable dimension to improve speed of training support vector effectively. At the same time it can eliminate the influence factors of multiple correlation. The results show that the proposed principal component analysis SVM model has good predictive accuracy and generalization ability, and opens up new avenue of research for analysis of static pressure pipe pile vertical bearing properties.


Sign in / Sign up

Export Citation Format

Share Document