Wind Tunnel Test on Icing on a Straight Blade for Vertical Axis Wind Turbine

2011 ◽  
Vol 301-303 ◽  
pp. 1735-1739
Author(s):  
Yan Li ◽  
Fang Feng ◽  
Sheng Mao Li ◽  
Wen Qiang Tian ◽  
Kotaro Tagawa

Icing on blade surface of the wind turbine set in cold regions is a serious problem. To invest the mechanism of icing and ice accretion on blade surface, wind tunnel tests were carried out on a static straight blade used for the straight-bladed vertical axis wind turbine by using an icing wind tunnel. The icing and ice accretions on blade surface at some typical angles of attack were observed and recorded in a fixed wind speed and steady flow discharge. The mass of ice accretions on the surface of blade were also measured and compared. At the same time, the drag and lift coefficients were tested by a three-component force balance. Based on the test results, the factors affecting the mass and characteristic of ice accretions and the drag and lift coefficients of the straight blade were discussed.

Author(s):  
Yanfeng Zhang ◽  
Zhiping Guo ◽  
Xiaowen Song ◽  
Xinyu Zhu ◽  
Chang Cai ◽  
...  

Forecasting the power performance and flow field of straight-blade vertical axis wind turbine (VAWT) and paying attention to the dynamic stall can enhance more adaptability to high turbulence and complicated wind conditions in cities environment. According to the blade element-momentum theory, the force of blade is analyzed in one period of revolution based on the structural characteristics of straight blade airfoil. The power performance of VAWT obtained by computational fluid dynamics (CFD) simulation is compared with experiment to estimate the accuracy about the numerical simulation results. As a result, the trend of average value of simulation Cpower is entirely consistent with the value of experiment data, and the extreme value of average Cpower of VAWT is 0.225 for tip speed ration (TSR) λ=2.19 when the freestream velocity is 8 m/s. The flow separation around the blade surface also gradually changes with the azimuth angle increasing, and the maximum pressure difference on the blade surface appears in the upstream. In the case of high leaf tip velocity, the synthetic velocity is much larger than the incoming wind velocity, and the angle of synthetic velocity increases slightly with the increase of blade tangential velocity. Thus, the angles of attack are very close in two TSRs λ=2.19 and 2.58. The research provides a computational model and theoretical basis for predicting wind turbine flow field to improve wind turbine power performance.


2013 ◽  
Vol 2013.62 (0) ◽  
pp. 255-256
Author(s):  
Qing'an LI ◽  
Takao MAEDA ◽  
Yasunari KAMADA ◽  
Junsuke MURATA ◽  
Toshiaki KAWABATA ◽  
...  

2015 ◽  
Vol 57 ◽  
pp. 144-158 ◽  
Author(s):  
K.M. Almohammadi ◽  
D.B. Ingham ◽  
L. Ma ◽  
M. Pourkashanian

Proceedings ◽  
2018 ◽  
Vol 2 (23) ◽  
pp. 1465 ◽  
Author(s):  
Andrés Meana-Fernández ◽  
Jesús Manuel Fernández Oro ◽  
Katia María Argüelles Díaz ◽  
Mónica Galdo-Vega ◽  
Sandra Velarde-Suárez

Wind tunnel testing of small-scale models is one of the most useful techniques to predict the performance of real-scale applications. In this work, the aerodynamic design and the construction of a small-scale model of a straight-bladed vertical axis wind turbine for wind tunnel testing has been performed. Using a double multiple streamtube model (DMST), different solidity values for the turbine and different airfoil geometries were compared to select the final design. Once an optimal design was selected, a numerical simulation using Computational Fluid Dynamics (CFD) was performed in order to obtain a more precise description of the flow field as well as the performance of the model. Future work will comprise the characterization of the model and the comparison of the experimental and numerical results.


2015 ◽  
Vol 137 (5) ◽  
Author(s):  
Vincenzo Dossena ◽  
Giacomo Persico ◽  
Berardo Paradiso ◽  
Lorenzo Battisti ◽  
Sergio Dell'Anna ◽  
...  

This paper presents the results of a wide experimental study on an H-type vertical axis wind turbine (VAWT) carried out at the Politecnico di Milano. The experiments were carried out in a large-scale wind tunnel, where wind turbines for microgeneration can be tested in real-scale conditions. Integral torque and thrust measurements were performed, as well as detailed aerodynamic measurements to characterize the flow field generated by the turbine downstream of the rotor. The machine was tested in both a confined (closed chamber) and unconfined (open chamber) environment, to highlight the effect of wind tunnel blockage on the aerodynamics and performance of the VAWT under investigation. The experimental results, compared with the blockage correlations presently available, suggest that specific correction models should be developed for VAWTs. The experimental thrust and power curves of the turbine, derived from integral measurements, exhibit the expected trends with a peak power coefficient of about 0.28 at tip-speed ratio equal to 2.5. Flow measurements, performed in three conditions for tip speed ratio equal to 1.5, 2.5, and 3.5, show the fully three-dimensional character of the wake, especially in the tip region where a nonsymmetrical wake and tip vortex are found. The unsteady evolution of the velocity and turbulence fields further highlights the effect of aerodynamic loading on the wake unsteadiness, showing the time-dependent nature of the tip vortex and the onset of dynamic stall for tip speed ratio lower than 2.


Sign in / Sign up

Export Citation Format

Share Document