Three Dimensional Modeling and Aerodynamic Analysis of MW Wind Turbine Blade

2011 ◽  
Vol 305 ◽  
pp. 274-278
Author(s):  
Hong Pan ◽  
Wen Lei Sun ◽  
Lian Ying He

Wind turbine blade is one of the key components of wind turbine, and its aerodynamic performance largely determine the reliability of wind turbine. This paper use the momentum - blade element theory, and correction by Prandtl, Wilson correction, Glauert correction and other methods to modify the model of the blade to come to the aerodynamic model, then using the point of the coordinate transformation theory each the airfoil two dimensional coordinate will conversion into space coordinates, using UG of three-dimensional modeling software to model, and finally the aerodynamic performance of airfoil is analyzed. Through modeling and aerodynamic analysis, for the following structure optimization and control strategy laid a foundation.

2014 ◽  
Vol 493 ◽  
pp. 105-110
Author(s):  
I Kade Wiratama

This paper presents the results of validation AWTSim code and this code has been used to analyze aerodynamic performance in the optimization design blade wind turbine. The validation was performed to know the accuracy of AWTSim code compared to WT_Perf by using the test wind turbine blade AWT-27. Blade AWT-27 was taken as the case for all through of this study and the design pitch angle for blade AWT-27 was 1.2° to stall (-1.2). However, in order to compare the results with available results, pitch angles 0, 1 and 2 degrees to stall were considered for simulation. The results of validation show that the predicted power curve, power coefficient and thrust by two codes are almost similar or less than 1%.


2008 ◽  
Vol 130 (3) ◽  
Author(s):  
Alvaro Gonzalez ◽  
Xabier Munduate

This work undertakes an aerodynamic analysis over the parked and the rotating NREL Phase VI wind turbine blade. The experimental sequences from NASA Ames wind tunnel selected for this study respond to the parked blade and the rotating configuration, both for the upwind, two-bladed wind turbine operating at nonyawed conditions. The objective is to bring some light into the nature of the flow field and especially the type of stall behavior observed when 2D aerofoil steady measurements are compared to the parked blade and the latter to the rotating one. From averaged pressure coefficients together with their standard deviation values, trailing and leading edge separated flow regions have been found, with the limitations of the repeatability of the flow encountered on the blade. Results for the parked blade show the progressive delay from tip to root of the trailing edge separation process, with respect to the 2D profile, and also reveal a local region of leading edge separated flow or bubble at the inner, 30% and 47% of the blade. For the rotating blade, results at inboard 30% and 47% stations show a dramatic suppression of the trailing edge separation, and the development of a leading edge separation structure connected with the extra lift.


Author(s):  
Alka Gupta ◽  
Abdulrahman Alsultan ◽  
R. S. Amano ◽  
Sourabh Kumar ◽  
Andrew D. Welsh

Energy is the heart of today’s civilization and the demand seems to be increasing with our growing population. Alternative energy solutions are the future of energy, whereas the fossil-based fuels are finite and deemed to become extinct. The design of the wind turbine blade is the main governing factor that affects power generation from the wind turbine. Different airfoils, angle of twist and blade dimensions are the parameters that control the efficiency of the wind turbine. This study is aimed at investigating the aerodynamic performance of the wind turbine blade. In the present paper, we discuss innovative blade designs using the NACA 4412 airfoil, comparing them with a straight swept blade. The wake region was measured in the lab with a straight blade. All the results with different designs of blades were compared for their performance. A complete three-dimensional computational analysis was carried out to compare the power generation in each case for different wind speeds. It was found from the numerical analysis that the slotted blade yielded the most power generation among the other blade designs.


Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3330 ◽  
Author(s):  
Jianhua Xu ◽  
Zhonghua Han ◽  
Xiaochao Yan ◽  
Wenping Song

A new airfoil family, called NPU-MWA (Northwestern Polytechnical University Multi-megawatt Wind-turbine A-series) airfoils, was designed to improve both aerodynamic and structural performance, with the outboard airfoils being designed at high design lift coefficient and high Reynolds number, and the inboard airfoils being designed as flat-back airfoils. This article aims to design a multi-megawatt wind turbine blade in order to demonstrate the advantages of the NPU-MWA airfoils in improving wind energy capturing and structural weight reduction. The distributions of chord length and twist angle for a 5 MW wind turbine blade are optimized by a Kriging surrogate model-based optimizer, with aerodynamic performance being evaluated by blade element-momentum theory. The Reynolds-averaged Navier–Stokes equations solver was used to validate the improvement in aerodynamic performance. Results show that compared with an existing NREL (National Renewable Energy Laboratory) 5 MW blade, the maximum power coefficient of the optimized NPU 5 MW blade is larger, and the chord lengths at all span-wise sections are dramatically smaller, resulting in a significant structural weight reduction (9%). It is shown that the NPU-MWA airfoils feature excellent aerodynamic and structural performance for the design of multi-megawatt wind turbine blades.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Javad Omidi ◽  
Karim Mazaheri

Abstract Dielectric Discharge Barrier (DBD) plasma actuators are considered as one of the best active electro-hydrodynamic control devices, and are considered by many contemporary researchers. Here a simple electrostatic model, which is improved by authors, and uses the Maxwell’s and the Navier–Stokes equations, is proposed for massive optimization computations. This model is used to find the optimum solution for application of a dielectric discharge barrier on a curved surface of a DU25 wind turbine blade airfoil, in a range of 5–18 kV applied voltages, and 0.5 to 13 kHz frequency range. Design variables are selected as the dielectric thickness and material, and thickness and length of the electrodes, and the applied voltage and frequency. The aerodynamic performance, i.e. the lift to drag ratio of the wind turbine blade section is considered as the cost function. A differential evolution optimization algorithm is applied and we have simultaneously found the optimized value of both geometrical and operational parameters. Finally the optimized value at each voltage and frequency are sought, and the optimum aerodynamic performance is derived. The physical effect of each design variable on the aerodynamic performance is discussed. A design relation is proposed to recommend an optimum design for wind turbine applications.


2011 ◽  
Vol 57 (5) ◽  
pp. 466-472 ◽  
Author(s):  
TongGuang Wang ◽  
Long Wang ◽  
Wei Zhong ◽  
BoFeng Xu ◽  
Li Chen

Sign in / Sign up

Export Citation Format

Share Document