Comprehensive Dynamic Model and Vibration Characteristics of Step-Type Compound Planetary Gear Sets

2011 ◽  
Vol 308-310 ◽  
pp. 1923-1928
Author(s):  
Fu Chun Yang ◽  
Xiao Jun Zhou ◽  
Ming Xiang Xie

Step-type compound planetary gear sets are widely applied in vehicle systems. Comprehensive dynamic model of step-type compound planetary gear sets, which includes translational, rotational vibrations and static transmission errors, was established. Natural vibration characteristics of the system, such as natural frequencies and vibration modes, were analyzed. Belt shape distribution characteristics of its natural frequencies was researched. According to vibration characteristics of both central components and planets, natural vibration modes of the system are classified into three types: central components translational vibration and planets random vibration, central components rotational vibration and planets identical vibration, central components static and adjacent planets reverse vibration mode.

2019 ◽  
Vol 9 (15) ◽  
pp. 3168
Author(s):  
Bingbing San ◽  
Yunlong Ma ◽  
Zhi Xiao ◽  
Dongming Feng ◽  
Liwei Yin

This work investigates the natural vibration characteristics of free-form shells when considering the influence of uncertainties, including initial geometric imperfection, shell thickness deviation, and elastic modulus deviation. Herein, free-form shell models are generated while using a self-coded optimization algorithm. The Latin hypercube sampling (LHS) method is used to draw the samplings of uncertainties with respect to their stochastic probability models. ANSYS finite element (FE) software is adopted to analyze the natural vibration characteristics and compute the natural frequencies. The mean values, standard deviations, and cumulative distributions functions (CDFs) of the first three natural frequencies are obtained. The partial correlation coefficient is adopted to rank the significances of uncertainty factors. The study reveals that, for the free-form shells that were investigated in this study, the natural frequencies is a random quantity with a normal distribution; elastic modulus deviation imposes the greatest effect on natural frequencies; shell thickness ranks the second; geometrical imperfection ranks the last, with a much lower weight than the other two factors, which illustrates that the shape of the studied free-form shells is robust in term of natural vibration characteristics; when the supported edges are fixed during the shape optimization, the stochastic characteristics do not significantly change during the shape optimization process.


2013 ◽  
Vol 300-301 ◽  
pp. 978-981
Author(s):  
Jun Gang Wang ◽  
Yong Wang ◽  
Zhi Pu Huo

A translational-rotational-coupling dynamic model has been built in the carrier-attached coordinate system.Differential equations of the system have been derived, and the natural frequencies and vibration modes of the planetary gear set have been obtained through solution of the associated eigenvalue problem. Based on the properties of the transmission system, the vibration modes of 2K-H spur planetary gear set can be classified into three categories, i.e., translational mode along radial direction, rotational mode, and planet mode.


2015 ◽  
Vol 83 (3) ◽  
Author(s):  
Gangli Chen ◽  
Xiaoting Rui ◽  
Fufeng Yang ◽  
Jianshu Zhang

Due to the mass consumption and engine thrust of a flexible missile during the powered phase flight, its natural vibration characteristics may be changed significantly. The calculation of natural frequencies and mode shapes plays an important role in the structural design of the missile. Aiming at calculating the natural vibration characteristics of the missile rapidly and accurately, a nonuniform beam subjected to an engine thrust is used to model the free vibration of the missile and Riccati transfer matrix method (RTMM) is adopted in this paper. Numerical results show that the natural frequencies of a typical single stage flexible missile are increased unceasingly in its powered phase, and its mode shapes are changed a lot. When the presented methodology is used to study the natural vibration characteristics of flexible missiles, not only the mass, stiffness, and axial compressive force distributions are described realistically but also numerical stability, high computation speed, and accuracy are achieved.


Author(s):  
Yichao Guo ◽  
Robert G. Parker

This paper studies sensitivity of compound planetary gear natural frequencies and vibration modes to system parameters. Based on a lumped parameter model of general compound planetary gears and their distinctive modal properties [1], the eigensensitivities to inertias and stiffnesses are calculated and expressed in compact formulae. Analysis reveals that eigenvalue sensitivities to stiffness parameters are directly proportional to modal strain energies, and eigenvalue sensitivities to inertia parameters are proportional to modal kinetic energies. Furthermore, the eigenvalue sensitivities to model parameters are determined by inspection of the modal strain and kinetic energy distributions. This provides an effective way to identify those parameters with the greatest impact on tuning certain natural frequencies. The present results, combined with the modal properties of general compound planetary gears, show that rotational modes are independent of translational bearing/shaft stiffnesses and masses of carriers/central gears, translational modes are independent of torsional bearing/shaft stiffnesses and moment of inertias of carriers/central gears, and planet modes are independent of all system parameters of other planet sets, the shaft/bearing stiffness parameters of carriers/rings, and the mass/moment of inertia parameters of carriers/central gears.


2011 ◽  
Vol 86 ◽  
pp. 756-761 ◽  
Author(s):  
Jun Zhang ◽  
Yi Min Song ◽  
Jin You Xu

A discrete lumped-parameter model for a general planetary gear set is proposed, which models the continuous flexible ring gear as discrete rigid ring gear segments connected with each other through virtual springs. The ring-planet mesh is analyzed to derive equations of motion of ring segments and planet. By assembling equations of motion of each individual component, the governing equations of planetary gear system are obtained. The solution for eigenvalue problem yields to natural frequencies and corresponding vibration modes. The simulations of example system reveal that the ring gear flexibility decreases system lower natural frequencies and the vibration modes can be classified into rotational, translational, planet and ring modes.


Author(s):  
MAJID MEHRABI ◽  
DR. V.P. SINGH

This work develops an analytical model of planetary gears and uses it to investigate their natural frequencies and vibration modes. The model admits three planar degrees of freedom for each of the sun, ring, carrier and planets. Vibration modes are classified into rotational, translational and planet modes. The natural frequency sensitivities to system parameters are investigated for tuned (cyclically symmetric) planetary gears. Parameters under consideration include support and mesh stiffnesses, component masses, and moments of inertia. Using the well-defined vibration mode properties of tuned planetary gears, the eigen sensitivities are calculated and expressed in simple exact formulae. These formulae connect natural frequency sensitivity with the modal strain or kinetic energy and provide efficient means to determine the sensitivity to all stiffness and inertia parameters by inspection of the modal energy distribution.


Author(s):  
Yoshifumi Mori ◽  
Takashi Saito ◽  
Takenori Nakamura ◽  
Katsuhide Fujita

The purpose of this study is to establish a new monitoring technique to detect the state of sliding portion and connecting portion, where it is known that some failure often occurs. In this paper, we examined the feasibility of estimation for the state in which the support rigidity of the sliding portion using the vibration characteristics in the experiment for a small experimental equipment and in the eigenvalue analysis based on the mathematical model. To simulate the change of the rigidity for the sliding portion, we employ two kinds of material, carbon and molybdenum steel as the ring bush of the ground support. To obtain the natural frequencies and modes for both the case, the impact tests are carried out for several crank angles in the small experimental apparatus as the vibration characteristics is depend upon the crank angle. Based on the obtained natural frequencies, the parameter identification was carried out. As a result, it showed the possibility of estimating the characteristics of the sliding portion by focusing on the natural vibration characteristics.


Sign in / Sign up

Export Citation Format

Share Document