Template Induced Synthesis of Nano-Hydroxyapatite by Co-Precipitation Method

2011 ◽  
Vol 311-313 ◽  
pp. 1713-1716 ◽  
Author(s):  
Yan Rong Sun ◽  
Tao Fan ◽  
Chang An Wang ◽  
Li Guo Ma ◽  
Feng Liu

Nano-hydroxyapatite with different morphology was synthesized by the co-precipitation method coupled with biomineralization using Ca(NO3)2•4H2O and (NH4)2HPO4 as reagents, adding chondroitin sulfate, agarose and aspartic acid as template. The structure and morphology of the prepared powders were characterized by X-ray diffraction (XRD) and transmission electron microscope (TEM).

2014 ◽  
Vol 1053 ◽  
pp. 444-449
Author(s):  
Xue Wen Cui ◽  
Gang Cheng ◽  
Rui Jiang Liu ◽  
Li Wei Wang ◽  
Yan Shuai Wang

The magnetic Fe2O3 nanoparticles were prepared by co-precipitation method with FeCl3 and NaOH as starting reagents. The surface of Fe2O3 nanoparticles was modified with tetraethyl orthosilicate. Fe2O3@SiO2 nanocomposites were calcined at 600 °C. The nanocomposites were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX). The PLL-Fe2O3@SiO2 (SMNP) was prepared by modifying with poly-L-lysine on the surface. The SMNP combined with plasmid siRNA by static electrical charges as one of gene carriers was transfected into SD rat neurons. The results of fluorescence microscope and Prussian blue staining show that SMNP can effectively enter cells. Therefore, SMNP are one kind of novel and effective gene carriers, it can transfect the plasmid which carries the siRNA into SD rats neurons in vitro.


2021 ◽  
Author(s):  
Yan Chen ◽  
Yuemei Lan ◽  
Dong Wang ◽  
Guoxing Zhang ◽  
Wenlong Peng ◽  
...  

A series of Gd2-xMoO6:xEu3+(x=0.18-0.38) nanophosphors were synthesized by the solvothermal method. The properties of this nanophosphor were characterized by x-ray diffraction (XRD), transmission electron microscope (TEM), fluorescence spectra and diffuse...


2011 ◽  
Vol 80-81 ◽  
pp. 217-220 ◽  
Author(s):  
Xue Qing Yue ◽  
Hai Jun Fu ◽  
Da Jun Li

Graphite encapsulated nickel nanoparticles were prepared by ball milling andsubsequently annealing a mixture of expanded graphite with nickel powders. The products were characterized by transmission electron microscope and X-ray diffraction. The formation mechanism of the products was discussed. Results show that the products have a size range of 20-150 nm. The graphite and nickel in the products all exhibit a high crystallinity.


Nanopages ◽  
2019 ◽  
pp. 1-11
Author(s):  
G. M. Taha ◽  
M. N. Rashed ◽  
M. S. El-Sadek ◽  
M. A. Moghazy

Abstract BiFeO3 (BFO) nanopowder was synthesized in a pure form via a sol- gel method based on glycol gel reaction. Effect of drying and preheating temperature on preventing other phases was studied. Many parameters were studied as calcination temperature and time & stirring temperature as well. The prepared powder was characterized by X-Ray Diffraction of powder (XRD) and Transmission Electron Microscope (TEM). High pure BiFeO3 was obtained by preheated process at 400 °C for 0.5 h and calcination at 600 °C for 0.5 h without any impurities compared to dry at110 °C.


2009 ◽  
Vol 79-82 ◽  
pp. 1719-1722
Author(s):  
Zhi Hong Zhang ◽  
Shao Yu Zhang ◽  
Xue Dong Liu

Attapulgite clay(ATP) from Xuyi county of China was purified by a wet method then treated with NaOH and 1.0 mol/L, 2.0 mol/L and 3.0 mol/L solutions of HCl. Transmission electron microscope(TEM) and X-ray diffraction (XRD) were used to characterize treated ATP. Results showed that wet purification could remove most of impurities. Treatment by alkaline and HCl of 1.0 mol/L and 2.0 mol/L could increase purity while treatment of 3.0 mol/L hydrochloric acid could dissolve some element of ATP so much as form SiO2 and destroy fiber structure to clips. Adsorption experiments of Fe3+ and Ni2+ from aqueous solutions were done using original ATP, purified ATP and treated ATP as absorbents. Results showed that Attapulgite could adsorb metal cations in significant amounts. Sodium hydroxide activation had little influence on adsorption capacity. Influences of acid treatments to ATP on adsorption capacity varied on different concentration solutions.


2010 ◽  
Vol 63 ◽  
pp. 392-395
Author(s):  
Yoshifumi Aoi ◽  
Satoru Furuhata ◽  
Hiromi Nakano

ZrN/TiN multi-layers were synthesized by ion beam sputtering technique. Microstructure and mechanical property of the ZrN/TiN multi-layers were characterized and the relationships between microstructure and hardness of the ZrN/TiN multi-layers with various bilayer thicknesses and thickness ratios were investigated. The microstructure of multi-layers have been investigated using transmission electron microscope (TEM) and X-ray diffraction (XRD).


2010 ◽  
Vol 177 ◽  
pp. 32-36 ◽  
Author(s):  
An Rong Wang ◽  
Jian Li ◽  
Qing Mei Zhang ◽  
Hua Miao

Weak magnetic ZnFe2O4 nanoparticles were prepared by coprecipitation and treated with different concentrations of Fe(NO3)3 solution. Untreated and treated particles were studied using a vibrating sample magnetometer, transmission electron microscope, by X-ray diffraction, X-ray energy dispersive spectroscopy and X photoelectron spectroscopy. The results showed that, after treatment, the ZnFe2O4/γ-Fe2O3 forms disphase nanoparticles, with enlarged size, enhanced magnetic properties and with a surface parceled with Fe(NO3)3. The size of the particles and their magnetic properties are related to the concentration of the treatment solution. The particle size and magnetic properties could be controlled by controlling the concentration of treating solution, therefore nanoparticles can be more widely used.


1998 ◽  
Vol 13 (6) ◽  
pp. 1511-1516 ◽  
Author(s):  
M. Umemoto ◽  
M. Udaka ◽  
K. Kawasaki ◽  
X. D. Liu

Recently, a new method, i.e., a plasma jet method, was developed in our lab for the production of ultrafine powders. In the present work, we investigated the formation of binary Al–Fe, Al–Si, Fe–Si, Al–Cu, Al–Ni, Ni–Ti, Fe–Cu, and Fe–Ti ultrafine powders using this method. Premixed pure elemental powders of various compositions of Al–Fe, Al–Si, Fe–Si, Al–Cu, Al–Ni, Ni–Ti, Fe–Cu, and Fe–Ti were used as starting materials. These premixed powders were injected into the plasma jet of Ar–N2 working gas to form ultrafine powders. The obtained ultrafine powders were characterized by x-ray diffraction and transmission electron microscope to check the microstructures of ultrafine particles.


2014 ◽  
Vol 70 (6) ◽  
pp. 1004-1010 ◽  
Author(s):  
Th. I. Shalaby ◽  
N. M. Fikrt ◽  
M. M. Mohamed ◽  
M. F. El Kady

This study investigated the applicability of magnetite Fe3O4 nanoparticles coated with chitosan (CMNs) for the removal of some toxic heavy metals from simulated wastewater. Magnetic nanomaterials were synthesized using the co-precipitation method and characterized by transmission electron microscope, scanning electron microscope, X-ray diffraction, and Fourier transformer infrared spectroscopy. The magnetic properties of the prepared magnetic nanoparticles were determined by a vibrating-sample magnetometer. Batch experiments were carried out to determine the adsorption kinetics of Cr(VI) and Cd(II) by magnetic nanoparticles. It is noteworthy that CMNs show a highly efficient adsorption capacity for low concentration Cr(VI) and Cd(II) ions solution, which can reach 98% within 10 min.


2014 ◽  
Vol 887-888 ◽  
pp. 116-120
Author(s):  
Ying Liang Bai ◽  
Lian Long He

Transmission Electron Microscope (TEM) and X-Ray Diffraction (XRD) were used to investigate crystallization of the Zr70Cu8Ti7Ni15 bulk amorphous alloy, the results show that the edge region of BMGs sample produces nanosize Nickel crystals using the method of the ion thinning to make the TEM sample. The quantity of nanocrystals is proportional to the time of ion thinning and they are not residual crystals in the BMGs.


Sign in / Sign up

Export Citation Format

Share Document