The Research of Nonlinearity Error Control on Five-Axis Machining Post Processor

2011 ◽  
Vol 311-313 ◽  
pp. 2353-2357 ◽  
Author(s):  
Qing Chun Tang ◽  
Jun He ◽  
Lan Lan Gao ◽  
Yu Huo Lai ◽  
Xue Ming Fang

Abstract:This paper analyses the causes and effective estimation method of nonlinear error; By machine tool motion solution, established a five-axis machine tool BV100 motion transformation mathematical models, combined with linear interpolation principle established the error compensation and nonlinear motion error model of the machine tool .by VB language, developed nonlinear error compensation function of special post process; and through the impeller cutting experiment validate the processor is correct and practical.

2021 ◽  
Author(s):  
Liangji Chen ◽  
Jinmeng Tang ◽  
Wenyi Wu ◽  
Zisen Wei

Abstract In order to solve the problem of deviation between actual and theoretical machining paths due to the presence of rotation axis in five-axis machining, an interpolation algorithm based on the optimization of swing cutter trajectory and the method of corresponding nonlinear error compensation are proposed. Taking A-C dual rotary table five-axis machine tool as an example, the forward and reverse kinematic model of the machine tool is established according to the kinematic chain of the machine tool. Based on the linear interpolation of rotary axis, the generation mechanism of nonlinear error is analyzed, the modeling methods of cutter center point and cutter axis vector trajectory are proposed respectively, and the parameterized model of swing cutter trajectory is formed. The formula for the nonlinear error is obtained from the two-dimensional cutter center point trajectory. According to the established model of swing cutter trajectory, the synchronous optimization method of cutter center point trajectory and cutter axis vector trajectory is proposed, and the nonlinear error compensation mechanism is established. First, pre-interpolation is performed on the given cutter location data to obtain a model of the swing cutter trajectory for each interpolated segment. Then the magnitude of the nonlinear error is calculated based on the parameters of the actual interpolation points during formal interpolation, and the interpolation points with large errors are compensated for the nonlinear error. The simulation results show that the proposed method can effectively reduce the impact of nonlinear errors on machining, and is of high practical value for improving the accuracy of cutter position and the quality of complex free-form machining in five-axis machining.


2017 ◽  
Vol 11 (2) ◽  
pp. 188-196 ◽  
Author(s):  
Daisuke Kono ◽  
◽  
Fumiya Sakamoto ◽  
Iwao Yamaji

A measuring instrument, Linked Ball Bar (LBB), is developed to measure machine tool motion errors quickly, flexibly, and robustly. The LBB employs the concept of double ball bar (DBB) and measures the distance between two balls attached to the spindle and table. The problem of short measurement range, the drawback of the DBB, is solved using a link. The measurement accuracy of the LBB is investigated. The analytical resolution of displacement measurement using the LBB is under 30 nm when the displacement direction coincides with the sensitivity direction. The difference between the LBB and the laser interferometer is less than 1 μm in the center measurement range of 75 mm. The repeatability of the LBB is ±0.4 μm and is at the same level as the interferometer. The kinematic error of a five-axis machine tool is measured using the LBB to demonstrate its validity. The parallelism between the C-axis and Z-axis identified using the LBB agrees with the result measured using the cylindrical square. The difference between the LBB and the cylindrical square is about 10 μm/m at the maximum. The LBB can provide quick and flexible measurements of the motion errors of five-axis machine tools.


2014 ◽  
Vol 687-691 ◽  
pp. 353-358
Author(s):  
Jin Wei Fan ◽  
Hong Xia Yan ◽  
Yu Hang Tang ◽  
Yi Song

In view of defects-"chew cutting" generated by the five-axis nc machine tool in the process of machining the S sample, the machine tool motion error model is established based on multi-body system theory. After that,combining sensitivity analysis theory with the research of machine tool processing defect causes.Then find out the main error terms which take great responsibility of machining defects and optimize related motion components,to meet accuracy requirements before leaving the factory.


Author(s):  
Jui-Jen Chou ◽  
D. C. H. Yang

Abstract In the integration of CAD and CAM, it is necessary to relate machine tool kinematics and control in a CAM process to the geometrical data in a CAD model. The data stored in a CAD model is usually static in nature and represented by unitless parameters. Yet, in machine tool motion and control, the data should be transformed into a time dependent domain. In this paper, a general theory on the conversion from desired paths to motion trajectory is analytically derived. The geometrical properties of a desired path, including position, tangent, and curvature are related to the kinematics of coordinated motion including feedrate, acceleration, and jerk. As a result, the motion commands used as control references to track arbitrary space curves for five-axis computer-controlled machines can be generated in a rather straight-forward as well as systematic way.


Author(s):  
Jennifer Creamer ◽  
Patrick M. Sammons ◽  
Douglas A. Bristow ◽  
Robert G. Landers ◽  
Philip L. Freeman ◽  
...  

This paper presents a geometric error compensation method for large five-axis machine tools. Compared to smaller machine tools, the longer axis travels and bigger structures of a large machine tool make them more susceptible to complicated, position-dependent geometric errors. The compensation method presented in this paper uses tool tip measurements recorded throughout the axis space to construct an explicit model of a machine tool's geometric errors from which a corresponding set of compensation tables are constructed. The measurements are taken using a laser tracker, permitting rapid error data gathering at most locations in the axis space. Two position-dependent geometric error models are considered in this paper. The first model utilizes a six degree-of-freedom kinematic error description at each axis. The second model is motivated by the structure of table compensation solutions and describes geometric errors as small perturbations to the axis commands. The parameters of both models are identified from the measurement data using a maximum likelihood estimator. Compensation tables are generated by projecting the error model onto the compensation space created by the compensation tables available in the machine tool controller. The first model provides a more intuitive accounting of simple geometric errors than the second; however, it also increases the complexity of projecting the errors onto compensation tables. Experimental results on a commercial five-axis machine tool are presented and analyzed. Despite significant differences in the machine tool error descriptions, both methods produce similar results, within the repeatability of the machine tool. Reasons for this result are discussed. Analysis of the models and compensation tables reveals significant complicated, and unexpected kinematic behavior in the experimental machine tool. A particular strength of the proposed methodology is the simultaneous generation of a complete set of compensation tables that accurately captures complicated kinematic errors independent of whether they arise from expected and unexpected sources.


1992 ◽  
Vol 114 (1) ◽  
pp. 15-22 ◽  
Author(s):  
Jui-Jen Chou ◽  
D. C. H. Yang

This paper presents an analytical study on the command generation for five-axis CNC machining or CMM measurement. In the integration of CAD and CAM, it is necessary to relate machine tool kinematics and control in a CAM process to the geometrical data in a CAD model. The data stored in a CAD model is usually static in nature and represented by unitless parameters. Yet, in machine tool motion and control, the data should be transformed into a time dependent domain. In this paper, a general theory on the conversion from desired paths to motion trajectory is analytically derived. The geometrical properties of a desired path, including position, tangent, and curvature are related to the kinematics of coordinated motion including feedrate, acceleration and jerk. As a result, the motion commands used as control references to track arbitrary space curves for five-axis computer-controlled machines can be generated in a rather straight-forward as well as systematic way.


2014 ◽  
Vol 494-495 ◽  
pp. 448-451
Author(s):  
Jia Zheng Wei

The 5-DOF CNC machine tools motion error, motion space simulation and interference are analyzed. The tool machine dynamic and static interference, trajectory planning are discussed, which realizes the parts manufacturability and processing rationality.


2012 ◽  
Vol 523-524 ◽  
pp. 889-894 ◽  
Author(s):  
Wei Wu ◽  
Toshiki Hirogaki ◽  
Eiichi Aoyama

Recently, developers of machining tools have begun paying more and more attention to multi-joint dual-arm robot, and it is expected the robot will reclaim its place in the field of new automation. Industrial dual-arm robots have therefore gained attention as new tools to control both linear motion and rotational motion accurately. On the other hand, the five-axis control machining center controlling the motion of three translation axes and two rotation axes has put into wide practical use. However, a one problem has been that it may be the difficult to measure the synchronic accuracy of rotation two axes without high accuracy gyro sensor. In the present report, we proposed a novel method to measure the synchronic accuracy of rotation two axes of machine tool table with a ball, which keeps a ball rolling around a circular path on the working plate by dual-arm cooperating control. As a result, we investigated an influence of each axis motion error on a ball- rolling path, and demonstrated this method made it feasible to estimate the synchronic accuracy of rotation two axes of machine tool table.


Sign in / Sign up

Export Citation Format

Share Document