Wide Band Gap Semiconductors Benefits for High Power, High Voltage and High Temperature Applications

2011 ◽  
Vol 324 ◽  
pp. 46-51 ◽  
Author(s):  
Dominique Tournier ◽  
Pierre Brosselard ◽  
Christophe Raynaud ◽  
Mihai Lazar ◽  
Herve Morel ◽  
...  

Progress in semiconductor technologies have been so consequent these last years that theoretical limits of silicon, speci cally in the eld of high power, high voltage and high temperature have been achieved. At the same time, research on other semiconductors, and es- pecially wide bandgap semiconductors have allowed to fabricate various power devices reliable and performant enough to design high eciency level converters in order to match applications requirements. Among these wide bandgap materials, SiC is the most advanced from a techno- logical point of view: Schottky diodes are already commercially available since 2001, JFET and MOSFET will be versy soon. SiC-based switches Inverter eciency bene ts have been quite established. Considering GaN alternative technology, its driving force was mostly blue led for optical drive or lighting. Although the GaN developments mainly focused for the last decade on optoelectronics and radio frequency, their properties were recently explored to design devices suitable for high power and high eciency applications. As inferred from various studies, due to their superior material properties, diamond and GaN should be even better than SiC, silicon (or SOI) being already closed to its theoretical limits. Even if the diamond maturity is still far away from GaN and SiC, laboratory results are encouraging speci cally for very high voltage devices. Apart from packaging considerations, SiC, GaN and Diamond o ers a great margin of progress. The new power devices o er high voltage and low on-resistance that enable important reduction in energy consumption in nal applications. Applications for wide bandgap materials are the direction of high voltage but also high temperature. As for silicon technology, WBG-ICs are under development to take full bene ts of power and drive integration for high temperature applications.

2000 ◽  
Vol 622 ◽  
Author(s):  
T.P. Chow

ABSTRACTThe present status of development of SiC and GaN devices for high-voltage power electronics applications is reviewed. Device structures that are particularly applicable to these two wide bandgap semiconductors are considered and compared to those commonly used in silicon. The simulated and experimental performance of two-terminal rectifiers and three- terminal transistors and thyristors are compared. The effects of material parameters (mobility, ionization coefficients, lifetimes) and defects on device characteristics are pointed out. Similarities and differences between electronic and photonic device development in these semiconductors are discussed.


2004 ◽  
Vol 457-460 ◽  
pp. 957-962 ◽  
Author(s):  
Jian Hui Zhao ◽  
Larry X. Li ◽  
Kiyoshi Tone ◽  
Petre Alexandrov ◽  
Leonid Fursin ◽  
...  

2020 ◽  
Vol 161 ◽  
pp. 01107
Author(s):  
A V Solomnikova ◽  
V. A. Lukashkin ◽  
O V Derevianko

To improve the performance characteristics of power and high-frequency electronics, wide bandgap semiconductors are now widely used. This paper presents consideration of features arising during exploration of electronic characteristics of wide bandgap materials. We use the admittance spectroscopy method for analyzing free carrier concentration and boron-impurity activation energy in semiconductor diamond. The special aspect that should be taken into account while studying wide bandgap materials is incomplete ionization of impurity. In this work we adjust the experimental conditions, basing on the previous experience, in particular reduce signal/noise ratio and reckon with heat capacity of the samples and substrate. As a result we obtained high quality conductance spectra and activation energy of boron impurity in low-doped diamond.


2020 ◽  
Author(s):  
◽  
Samira Shamsir

Wide bandgap (WBG) semiconductors such as GaN and SiC are emerging as promising alternatives to Si for new generation of high efficiency power devices. GaN has attracted a lot of attention recently because of its superior material properties leading to potential realization of power transistors for high power, high frequency, and high temperature applications. In order to utilize the full potential of GaN-based power transistors, proper device modeling is essential to verify its operation and improve the design efficiency. In this view, this research work presents modeling and characterization of GaN transistors for high power and high temperature applications. The objective of this research work includes three key areas of GaN device modeling such as physics-based analytical modeling, device simulation with numerical simulator and electrothermal SPICE model for circuit simulation. The analytical model presented in this dissertation enables understanding of the fundamental physics of this newly emerged GaN device technology to improve the operation of existing device structures and to optimize the device configuration in the future. The numerical device simulation allows to verify the analytical model and study the impact of different device parameters. An empirical SPICE model for standard circuit simulator has been developed and presented in the dissertation which allows simulation of power electronic circuits employing GaN power devices. The empirical model provides a good approximation of the device behavior and creates a link between the physics-based analytical model and the actual device testing data. Furthermore, it includes an electrothermal model which can predict the device behavior at elevated temperatures as required for high temperature applications.


MRS Advances ◽  
2019 ◽  
Vol 4 (44-45) ◽  
pp. 2377-2382
Author(s):  
J Pan ◽  
S. Afroz ◽  
N. Crain ◽  
W. Henning ◽  
J. Oliver ◽  
...  

AbstractIn this paper we report high voltage MOS and Schottky Diode CV techniques for silicon and SiC power devices. 4H Silicon carbide is a wide bandgap semiconductor suitable for high voltage power electronics and RF applications due to high avalanche breakdown critical electric field, and thermal conductivity. The performance of various power devices, which may include MOSFET and Static Induction Transistor (SIT), can be affected by the deep level traps in the substrate and the oxide interfacial defects. We have characterized deep level trap (High Voltage Schottky Diode HF CV) and oxide interface trap densities (High Voltage HF MOS CV), measured the device channel doping profile for both 4H SiC and silicon, gate metal workfunction, and simulated the effects on DC/AC performance.


Sign in / Sign up

Export Citation Format

Share Document