Experimental Study on CTOD Fracture Toughness of Welded Joints of Low Temperature Steel

2011 ◽  
Vol 328-330 ◽  
pp. 1272-1276 ◽  
Author(s):  
Zong Tao Fang ◽  
Bo Sun ◽  
Chun Run Li

According to BS7448 fracture toughness test standard, crack tip opening displacement (CTOD) for ASTM A333 Gr.6 low temperature steel which is used in offshore platform were carried out in low temperature (0°C, -29°C). Three point bending tests were conducted on the specimens, the dimension of which is B×2B (B is the thickness) and notch direction is NP. The final value of CTOD was calculated by P-V curves of both the welds and HAZ (heat affected zone). And the experimental results were analyzed and discussed in the paper. The low temperature steel welded joints show good low temperature toughness, the selected welding procedure is applied to construction of pipelines.The CTOD value of HAZ is larger than weld metal and weld is the weakest position in the whole structure. The experiment results provide an important basis for the choice of welding method and welding process parameters, ECA assessment and construction of offshore platform.

2011 ◽  
Vol 71-78 ◽  
pp. 5034-5037
Author(s):  
Qi Ming Yu ◽  
Hao Liang Sa ◽  
Qian Long Yang ◽  
Pei Ao ◽  
Xiao Jing Liao ◽  
...  

According to the BS7448 fracture toughness test standard and DNV-OS-C401,this dissertation conducted a CTOD(crack tip opening displacement) fatigue crack precast test with the used steel Q370qE in bridge.Respectively tested different thickness mather materials’condition of fatigue crack,and analysis the test’s results,thus obtained the related conclusions.


2011 ◽  
Vol 71-78 ◽  
pp. 890-897 ◽  
Author(s):  
Yuan Qing Wang ◽  
Yun Lin ◽  
Yan Nian Zhang ◽  
Yong Jiu Shi

Three point bending tests were carried out on 14mm-thick Q460C the high-strength structural steel at low temperature, and scanning electronic microscope of the fracture appearance was analyzed. The results showed that the obvious feature of brittle mechanism was shown on the three point bending specimen fracture whose testing took place at -40°C. And the crack tip opening displacement value of Q460C steel, which was less than that of Q235 steel, Q345 steel and Q390 steel at low temperature, tended to decrease with respect to the temperature reduction. Moreover, a Boltzmann function fitting analysis was applied to the experimental data, and the ductile-brittle transition temperature and the changing regularity were obtained.


2017 ◽  
Vol 741 ◽  
pp. 57-62
Author(s):  
Fumito Kawamura ◽  
Masazumi Miura ◽  
Ryuichiro Ebara ◽  
Keiji Yanase

Many studies have been conducted to characterize the fracture toughness of structural steels and their welded joints. However, most studies focus on newly developed steels, and the number of studies on the fracture toughness of long-term used steels in structural components is rather limited. Furthermore, a lack of data on the fracture toughness causes difficulties in evaluating the structural integrity of existing steel structures. In this study, CTOD tests were performed to characterize the fracture toughness of penstock that has been in service for 50 years. By measuring the critical crack tip opening displacement in conjunction with analysis for chemical compositions, the characteristics of fracture toughness were investigated.


Author(s):  
Xian-Kui Zhu

Fracture toughness is often described by the J-integral or crack-tip opening displacement (CTOD) for ductile materials. ASTM, BSI and ISO have developed their own standard test methods for measuring fracture initiation toughness and resistance curves in terms of the J and CTOD using bending dominant specimens in high constraint conditions. However, most actual cracks are in low constraint conditions, and the standard resistance curves may be overly conservative. To obtain more realistic fracture toughness for actual cracks in low-constraint conditions, different fracture test methods have been developed in the past decades. To facilitate understanding and use the test standards, this paper presents a critical review on commonly used fracture toughness test methods using standard and non-standard specimens in reference to the fracture parameters J and CTOD, including (1) ASTM, BSI and ISO standard test methods, (2) constraint correction methods for formulating a constraint-dependent resistance curve, and (3) direct test methods using the single edge-notched tension (SENT) specimen. This review discusses basic concepts, basic methods, estimation equations, test procedures, historical efforts and recent progresses.


Author(s):  
Dong-Yeob Park ◽  
Jean-Philippe Gravel ◽  
C. Hari Manoj Simha ◽  
Jie Liang ◽  
Da-Ming Duan

Shallow-notched single edge-notched tension (SE(T) or SENT) and deep- and shallow-notched single edge-notched bend (SE(B) or SENB) specimens with notches positioned in the weld and the heat-affected zone were tested. Crack-tip opening displacement (CTOD) versus resistance curves were obtained using both a single and double clip gauge consolidated in a SE(T) single-specimen. Up until the peak load the resistance curves from both gauging methods yield approximately the same results; thereafter the curves deviate. Interrupted testing showed that the crack had initiated below 50% of the peak load, and in some cases had propagated significantly prior to reaching the peak load.


Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5249
Author(s):  
Tadeusz Szymczak ◽  
Katarzyna Makowska ◽  
Zbigniew L. Kowalewski

This paper focuses on the mechanical properties analysis of the high strength S700MC steel applied in welding joints. The research comprised mechanical tests for checking what the changes of tensile characteristics, mechanical parameters, resistance to impact, and fracture toughness look like in selected regions of the welding joint. Stress-strain curves have shown significant differences in the tensile characteristic shape and the values of Young’s modulus, yield stress, ultimate tensile strength, and ductility due to the welding process applied. In the case of Charpy tests, the courses of the accumulated energy, force, deflection, and project velocity are presented, indicating the maximum value of absorbed energy, the same level of force during the first contact of the projectile with the specimens, and the significant variation of the velocity for the impact energy ranging from 50 J up to 300 J. On the basis of the fracture toughness tests, the distributions of the CTOD (Crack Tip Opening Displacement) values are presented for the parent material, HAZ (Heat Affected Zone) and weld. Moreover, the characteristic features of the fatigue pre-crack, transient and crack propagation zones are identified and discussed.


Sign in / Sign up

Export Citation Format

Share Document