Current Situation of Tight Sand Gas in China

2011 ◽  
Vol 361-363 ◽  
pp. 85-89
Author(s):  
Shi Zhen Li ◽  
De Wu Qiao

Unconventional natural gas because of a huge amount of resources has been received extensive attention in the world. Based on the present technology in China, tight sand gas as one type of unconventional gas, has become the most realistic energy resources, and has reached a certain development scale. Low porosity and permeability of tight sand gas reservoirs are widely distributed in China's major basins, the proved reserves of tight sand gas reservoirs in the proportion of reserves increases significantly year by year. Tight sand gas exploration in unconventional natural gas is most realistic, the concept of tight sand gas, reservoir characteristics, formation mechanism of unconventional tight sand gas, distribution in China are reviewed in the essay, exploration direction and some suggestions are pointed out at the end.

2013 ◽  
Vol 734-737 ◽  
pp. 320-325
Author(s):  
Jian Guo Wang ◽  
Long Chen ◽  
Hai Jie Zhang ◽  
Tao Han

Currently, with a sharp increase in demand for natural gas and a strict energy supply circumstances, the development of tight sand gas becomes a pressing need for the rapid development of Chinas society and economy. At the end of 2010, the reserves and annual production of tight sand gas in China accounted for 39.2 percent and 24.6 percent of national natural gas, respectively, and the proportions are expected to increase. Compared with other unconventional gas such as shale gas and coal bed methane, the techniques of tight sand gas are relatively mature and development costs of it are relatively low. So tight sand gas should be considered in priority in the exploration and exploitation of unconventional gas in China. The total reserves of tight sand gas in China are 12 trillion cubic meters. Tight sand gas in China possesses the rich reserves and enormous potential to develop, which can ease the current shortage of energy. Besides, China has mastered a series of key techniques such as the well drilling and completion protection supporting technique; well completion and staged fracturing technique of horizontal well, which guarantees the technical feasibility of the development of tight sand gas reservoirs. From the perspective of market, social and environmental meaning, reserves, technique and economic feasibility, this paper presents a systematical analysis about the importance of developing tight sand gas in China.


2013 ◽  
Vol 734-737 ◽  
pp. 1179-1182
Author(s):  
Liang Tong Fu ◽  
Tai Liang Fan ◽  
Ren Li Qi ◽  
Zi Qiang Cao

Deep basin gas, which is trapped deep in a basin, is a kind of unconventional natural gas. It is also one of the important unconventional gas resources. In the previous studies of the mechanism of deep basin gas accumulation, force balance and material balance are considered as essential conditions for the formation of deep basin gas reservoirs. However, the gravity of natural gas is not fully taken into account in the analysis of force balance. In this dissertation, the density of natural gas under the condition of underground temperature and pressure is calculated by using the EOS. The result shows that the density of natural gas cannot be neglected and the PR EOS is applicable to the analysis of the relationship between the volume of natural gas and the condition of underground temperature and pressure.


2021 ◽  
Vol 73 (08) ◽  
pp. 63-64
Author(s):  
Chris Carpenter

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper OTC 30732, “Economic Feasibility Study of Several Usage Alternatives for a Stranded Offshore Gas Reservoir,” by Khoi Viet Trinh, SPE, and Rouzbeh G. Moghanloo, SPE, University of Oklahoma, prepared for the 2020 Offshore Technology Conference, originally scheduled to be held in Houston, 4–7 May. The paper has not been peer reviewed. Copyright 2020 Offshore Technology Conference. Reproduced by permission. This paper compares economics of a floating liquefied natural gas (FLNG) project with those of an onshore LNG plant and gas-to-wire (GTW) processes. Sensitivity analyses and tornado charts are used to evaluate the importance of various uncertain parameters associated with FLNG construction and operation. This study will be helpful for future considerations in using FLNG to convert offshore gas reservoirs previously considered stranded into economically viable resources. The results from this economic model can play a key role in the future of the natural gas industry and energy market in West Africa. Assumptions Before presenting different economic scenarios, the following assumptions must be established: * The pipeline will have the correct diameter, pressure rating, and metallurgy to transport produced gas. Only the pipe length will be considered a variable. * Operating expenses (OPEX) of both onshore LNG and FLNG will be the same. Realistically, however, OPEX of FLNG will be different from that of onshore LNG. * A subsidy from the Nigerian government has been obtained for the onshore LNG plant. * The electricity price is assumed to be $0.25/kWh. * An assumed upstream cost of $2/Mscf to cover onshore LNG gas pretreatment is assumed. * The onshore LNG plant and FLNG will have the same lifespan. However, in reality, availability of FLNG can be lower than that of onshore LNG. Pricing Models FNLG. Because of the relative recency of FNLG, few pricing models have been readily available. For the complete paper, Shell’s Prelude project is the basis for pricing of FLNG. Prelude costs averaged out to approximately $14 billion, which will be used as the cost of the facility for the FLNG scenario in the economic analysis.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Solmaz Mukhtarova ◽  

The Turkish Republics of the Caspian region have maintained their importance throughout history and are still important for a variety of reasons. Always having strategic importance, this region is sometimes commercially military-friendly. At present, the world is on the agenda thanks to rich oil and natural gas reserves, and has not been stable for many years. The search for alternative hydrocarbon resources is to meet the growing population in the world today and thus meet growing energy needs. In this case, the countries of the Caspian region have become the countries attracting attention to the rich energy resources of Western energy and global energy companies.


Energy Policy ◽  
2021 ◽  
Vol 153 ◽  
pp. 112253
Author(s):  
Jianye Liu ◽  
Zuxin Li ◽  
Xuqiang Duan ◽  
Dongkun Luo ◽  
Xu Zhao ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3718 ◽  
Author(s):  
Qi Zhang ◽  
Shu Jiang ◽  
Xinyue Wu ◽  
Yan Wang ◽  
Qingbang Meng

Given reliable parameters, a newly developed semianalytic model could offer an efficient option to predict the performance of the multi-fractured horizontal wells (MFHWs) in unconventional gas reservoirs. However, two major challenges come from the accurate description and significant parameters uncertainty of stimulated reservoir volume (SRV). The objective of this work is to develop and calibrate a semianalytic model using the ensemble smoother with multiple data assimilation (ES-MDA) method for the uncertainty reduction in the description and forecasting of MFHWs with nonuniform distribution of induced fractures. The fractal dimensions of induced-fracture spacing (dfs) and aperture (dfa) and tortuosity index of induced-fracture system (θ) are included based on fractal theory to describe the properties of SRV region. Additionally, for shale gas reservoirs, gas transport mechanisms, e.g., viscous flow with slippage, Knudsen diffusion, and surface diffusion, among multi-media including porous kerogen, inorganic matter, and fracture system are taken into account and the model is verified. Then, the effects of the fractal dimensions and tortuosity index of induced fractures on MFHWs performances are analyzed. What follows is employing the ES-MDA method with the presented model to reduce uncertainty in the forecasting of gas production rate for MFHWs in unconventional gas reservoirs using a synthetic case for the tight gas reservoir and a real field case for the shale gas reservoir. The results show that when the fractal dimensions of induced-fracture spacing and aperture is smaller than 2.0 or the tortuosity index of induced-fracture system is larger than 0, the permeability of induced-fracture system decreases with the increase of the distance from hydraulic fractures (HFs) in SRV region. The large dfs or small θ causes the small average permeability of the induced-fracture system, which results in large dimensionless pseudo-pressure and small dimensionless production rate. The matching results indicate that the proposed method could enrich the application of the semianalytic model in the practical field.


2018 ◽  
Vol 6 (4) ◽  
pp. T849-T859
Author(s):  
Mianmo Meng ◽  
Hongkui Ge ◽  
Yinghao Shen ◽  
Wenming Ji ◽  
Fei Ren

Hydraulic fracturing plays an important role in developing unconventional natural gas. The large amount of fracturing fluid retention becomes a significant phenomenon in gas fields. Much research has been carried out to explain this mechanism. Imbibition is regarded as one of the important factors and has been investigated extensively. However, the saturation evolution of different types of fluids (liquid, free gas, and trapped gas) has been less researched during imbibition. A porosity experiment combined with an imbibition experiment was conducted to research the fluids-saturation evolution. There are three types of experimental rocks: tight sand, volcanic rock, and shale. The free-gas saturation decreases with the increasing liquid saturation in all samples. However, the sum of these two types of saturation is approximately 100% during imbibition in tight sand. This indicates that the pore space is almost totally filled by liquid and free gas. The sum of these two types of saturation is less than 100% during imbibition in volcanic rock. This indicates that there is trapped gas by liquid. Trapped-gas saturation increases at the early period and decreases at the late period. The sum of these two types of saturation greatly exceeds 100% during imbibition and increases with the imbibition time in shale rocks. This means that there is large amount of extra imbibition liquid. At the same time, the free-gas saturation fluctuates with the increasing liquid saturation. Based on the above results, it can be concluded that tight sand reservoirs have nearly no trapped gas and extra imbibition liquid, volcanic reservoirs have trapped gas and a little extra imbibition liquid, and shale reservoirs have some trapped gas and a large amount of extra imbibition liquid. This research contributes to understanding the fluid saturation evolution during hydraulic fracturing in unconventional natural gas reservoirs.


Author(s):  
Olivier Benyessaad ◽  
Diane Ruf

The development of the Liquefied Natural Gas (LNG) offshore industry is viewed as a major improvement in the exploitation of the world’s energy resources. Most energy analysts agree that significant increases in Natural Gas (NG) demand is expected in the next decades due to relatively low prices and an important gas quantity worldwide. In order to develop the use of this resource, many innovative offshore floating installations have been developed and are currently deployed all over the world. However, hazards linked to LNG and due to hydrocarbon releases are not always so well understood or controlled. Thus, in order to quantify and understand these risks associated to LNG treatment or containment as well as their consequences, a number of different types of risk and reliability engineering techniques can be used at different stages of the project. The following will present specific analyses that have been performed on innovative LNG Offshore floating units to provide a qualitative and quantitative hazard assessment by predicting the consequences and the frequencies of these hazards, while improving the reliability of the installation and its availability. The paper will first introduce the LNG offshore industry outlining the different installations possibilities and the associated hazards. Then, based on recent projects, it will detail the risk-based methodology applied to ensure the safety and the profitability of such innovative installations when no rules are able to frame fully the development of these projects. Finally, after having pointed out the ins and outs of risk studies, a case study using most of the methods presented previously will be developed.


2017 ◽  
Vol 7 (6) ◽  
pp. 1126-1140 ◽  
Author(s):  
Jintang Wang ◽  
Baojiang Sun ◽  
Zhiyuan Wang ◽  
Jianbo Zhang

Sign in / Sign up

Export Citation Format

Share Document