Preparation of Palm Oil Based Carbon Nanotubes at Various Ferrocene Concentration

2011 ◽  
Vol 364 ◽  
pp. 408-411 ◽  
Author(s):  
M. S. Azmina ◽  
A.B. Suriani ◽  
A.N. Falina ◽  
M. Salina ◽  
J. Rosly ◽  
...  

In this work, different ferrocene concentration (1.0-8.0 wt%) of bio-hydrocarbon palm oil precursor were utilized to investigate its effect on the characteristics of the produced carbon nanotubes (CNT). The palm oil-ferrocene mixture was vaporized at 450°C and pyrolyzed at 800°C for 30 min time in argon ambient. The CNT were analyzed using field emission scanning electron microscopy, scanning transmission electron microscopy, fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis. The analysis confirmed different diameter and morphologies of CNT were formed when different ferrocene concentration were used. FTIR spectra show the prominent peak at ~1445, 1736, 2851 and 2925 cm-1that are identified as CNT and C–Hxrespectively.

2016 ◽  
Vol 22 (4) ◽  
pp. 754-767 ◽  
Author(s):  
Kayla X. Nguyen ◽  
Megan E. Holtz ◽  
Justin Richmond-Decker ◽  
David A. Muller

AbstractA long-standing goal of electron microscopy has been the high-resolution characterization of specimens in their native environment. However, electron optics require high vacuum to maintain an unscattered and focused probe, a challenge for specimens requiring atmospheric or liquid environments. Here, we use an electron-transparent window at the base of a scanning electron microscope’s objective lens to separate column vacuum from the specimen, enabling imaging under ambient conditions, without a specimen vacuum chamber. We demonstrate in-air imaging of specimens at nanoscale resolution using backscattered scanning electron microscopy (airSEM) and scanning transmission electron microscopy. We explore resolution and contrast using Monte Carlo simulations and analytical models. We find that nanometer-scale resolution can be obtained at gas path lengths up to 400 μm, although contrast drops with increasing gas path length. As the electron-transparent window scatters considerably more than gas at our operating conditions, we observe that the densities and thicknesses of the electron-transparent window are the dominant limiting factors for image contrast at lower operating voltages. By enabling a variety of detector configurations, the airSEM is applicable to a wide range of environmental experiments including the imaging of hydrated biological specimens and in situ chemical and electrochemical processes.


2017 ◽  
Vol 23 (6) ◽  
pp. 1159-1172 ◽  
Author(s):  
Guillaume Wille ◽  
Jennifer Hellal ◽  
Patrick Ollivier ◽  
Annie Richard ◽  
Agnes Burel ◽  
...  

AbstractUnderstanding biofilm interactions with surrounding substratum and pollutants/particles can benefit from the application of existing microscopy tools. Using the example of biofilm interactions with zero-valent iron nanoparticles (nZVI), this study aims to apply various approaches in biofilm preparation and labeling for fluorescent or electron microscopy and energy dispersive X-ray spectrometry (EDS) microanalysis for accurate observations. According to the targeted microscopy method, biofilms were sampled as flocs or attached biofilm, submitted to labeling using 4’,6-diamidino-2-phenylindol, lectins PNA and ConA coupled to fluorescent dye or gold nanoparticles, and prepared for observation (fixation, cross-section, freezing, ultramicrotomy). Fluorescent microscopy revealed that nZVI were embedded in the biofilm structure as aggregates but the resolution was insufficient to observe individual nZVI. Cryo-scanning electron microscopy (SEM) observations showed nZVI aggregates close to bacteria, but it was not possible to confirm direct interactions between nZVI and cell membranes. Scanning transmission electron microscopy in the SEM (STEM-in-SEM) showed that nZVI aggregates could enter the biofilm to a depth of 7–11µm. Bacteria were surrounded by a ring of extracellular polymeric substances (EPS) preventing direct nZVI/membrane interactions. STEM/EDS mapping revealed a co-localization of nZVI aggregates with lectins suggesting a potential role of EPS in nZVI embedding. Thus, the combination of divergent microscopy approaches is a good approach to better understand and characterize biofilm/metal interactions.


2016 ◽  
Vol 51 (16) ◽  
pp. 2291-2300 ◽  
Author(s):  
Shadpour Mallakpour ◽  
Samaneh Soltanian

Chemical functionalization of carboxylated multiwalled carbon nanotubes with vitamin B1 was carried out under ultrasonic irradiation. The functionalized nanotubes were embedded in a chiral and biodegradable poly(ester-imide) to prepare multiwalled carbon nanotubes reinforced polymer nanocomposites. Optically active poly(ester-imide) was synthesized by step-growth polymerization of aromatic diol and amino acid based diacid. The vitamin B1 functionalized multiwalled carbon nanotubes and the resulting nanocomposites were examined using Fourier-transform infrared spectroscopy, thermogravimetric analysis, X-ray diffraction, transmission electron microscopy, and field-emission scanning electron microscopy. Thermogravimetric analysis results indicated that temperature at 10% weight loss was increased from 409℃ for pure PEI to 419℃, 427℃, and 430℃ for nanocomposites containing 5%, 10%, and 15% functionalized multiwalled carbon nanotubes, respectively. The Fourier-transform scanning electron microscopy and transmission electron microscopy images exhibited that the functionalized multiwalled carbon nanotubes were separated individually and enwrapped by polymer chains.


2014 ◽  
Vol 20 (1) ◽  
pp. 124-132 ◽  
Author(s):  
Binay Patel ◽  
Masashi Watanabe

AbstractScanning transmission electron microscopy in scanning electron microscopy (STEM-in-SEM) is a convenient technique for soft materials characterization. Various specimen-holder geometries and detector arrangements have been used for bright-field (BF) STEM-in-SEM imaging. In this study, to further the characterization potential of STEM-IN-SEM, a new specimen holder has been developed to facilitate direct detection of BF signals and indirect detection of dark-field (DF) signals without the need for substantial instrument modification. DF imaging is conducted with the use of a gold (Au)-coated copper (Cu) plate attached to the specimen holder which directs highly scattered transmitted electrons to an off-axis yttrium-aluminum-garnet (YAG) detector. A hole in the copper plate allows for BF imaging with a transmission electron (TE) detector. The inclusion of an Au-coated Cu plate enhanced DF signal intensity. Experiments validating the acquisition of true DF signals revealed that atomic number (Z) contrast may be achieved for materials with large lattice spacing. However, materials with small lattice spacing still exhibit diffraction contrast effects in this approach. The calculated theoretical fine probe size is 1.8 nm. At 30 kV, in this indirect approach, DF spatial resolution is limited to 3.2 nm as confirmed experimentally.


2001 ◽  
Vol 706 ◽  
Author(s):  
Satishkumar B. Chikkannanavar ◽  
Andreas Taubert ◽  
David E. Luzzi

AbstractNanowires of magnetic metals (Ho, Gd) have been synthesized inside the hollow interior of single wall carbon nanotubes by the sealed-tube reaction. Amongst the d- and f-series metal chlorides investigated in this study, HoCl3 and GdCl3 fill the SWNTs to a significantly higher extent than FeCl2 and CoCl2. HoCl3 and GdCl3 nanowires have been transformed into the respective metal nanowires via the reduction of the chloride nanowires. The nanowires have been imaged using high-resolution transmission electron microscopy and scanning transmission electron microscopy (STEM). X-ray energy dispersive spectroscopy carried out in conjunction with STEM confirmed the presence of metal chloride and metal nanowires.


2012 ◽  
Vol 18 (5) ◽  
pp. 1037-1042 ◽  
Author(s):  
Yun-Wen You ◽  
Hsun-Yun Chang ◽  
Hua-Yang Liao ◽  
Wei-Lun Kao ◽  
Guo-Ji Yen ◽  
...  

AbstractBased on a scanning electron microscope operated at 30 kV with a homemade specimen holder and a multiangle solid-state detector behind the sample, low-kV scanning transmission electron microscopy (STEM) is presented with subsequent electron tomography for three-dimensional (3D) volume structure. Because of the low acceleration voltage, the stronger electron-atom scattering leads to a stronger contrast in the resulting image than standard TEM, especially for light elements. Furthermore, the low-kV STEM yields less radiation damage to the specimen, hence the structure can be preserved. In this work, two-dimensional STEM images of a 1-μm-thick cell section with projection angles between ±50° were collected, and the 3D volume structure was reconstructed using the simultaneous iterative reconstructive technique algorithm with the TomoJ plugin for ImageJ, which are both public domain software. Furthermore, the cross-sectional structure was obtained with the Volume Viewer plugin in ImageJ. Although the tilting angle is constrained and limits the resulting structural resolution, slicing the reconstructed volume generated the depth profile of the thick specimen with sufficient resolution to examine cellular uptake of Au nanoparticles, and the final position of these nanoparticles inside the cell was imaged.


2009 ◽  
Vol 81 (12) ◽  
pp. 2317-2325 ◽  
Author(s):  
Wei-De Zhang ◽  
Jin Chen

Strongly bonded arrays of vertically aligned, multi-walled carbon nanotubes (MWNTs) have been successfully grown on Ta foils, and provide a convenient basis for fabricating electrodes with high conductivity and stability. The MWNT arrays were further coated by nanostructured MnO2 through reacting with KMnO4 solution at room temperature. The morphology of the MnO2/MWNT nanocomposite was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It was found that the MnO2 is a beehive-like nanostructure that is homogeneously and densely coated on the surface of the MWNTs. The capacitance of the MWNT electrode was significantly increased from 0.14 to 6.81 mF cm–2 after being modified with nanostructured MnO2, that is, the mass-specific capacitance of the bare and MnO2-modified MWNTs was about 33 and 446 F g–1, respectively. The MnO2/MWNT nanocomposite on Ta foils could be potential for developing a supercapacitor.


Sign in / Sign up

Export Citation Format

Share Document