Research on the Fast Start-up of Anaerobic-Aerobic-Anoxic-Aerobic Sequencing Batch Reactor

2011 ◽  
Vol 374-377 ◽  
pp. 1013-1016
Author(s):  
Hui Yang ◽  
Yu Zhang ◽  
Yue Xu

Abstract. The paper aims to study the fast start-up of anaerobic-aerobic-anoxic-aerobic sequencing batch reactor, with domestic sewage as treating object, to solve the problem of SBR that can be used for denitrification or dephosphorization independently and to realize simultaneous nitrogen and phosphorus removal in a single SBR system. Phosphorus accumulating organisms were enriched at the anaerobic condition for 2h/aerobic for 3h after activated sludge were inoculated. Then denitrifying polyphosphate-accumulating organisms were enriched by inserting an anoxic phase into the aerobic phase. The lengths of anaerobic time, anoxic time and aerobic time were adjusted and the nitrogen and phosphorus removal effect of (AO)2SBR system were observed. The (AO)2SBR system was started successfully with 80d of training and domesticating. The nitrogen and phosphorus removal effect was performed preferably at the condition of anaerobic(2h)-aerobic(1.5h)-anoxic(1.5h)-aerobic(0.5h). The removal rate of COD, NH4+-N, TN and TP reached 90%, 97%, 88% and 92% respectively. And 33% of energy was saved when aerobic time was shortened from 3h to 2h, while the treating effect dropped off rarely. The results show that (AO)2SBR is applicable for simultaneous nitrogen and phosphorus removal, and the effluent water quality meets the first level B criteria specified in Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant(GB 18918-2002). The system can also reach the aim of saving energy and providing theoretical basis for the nitrogen and phosphorus removal in single SBR systems.

2019 ◽  
Vol 1 (2) ◽  
pp. 97-99
Author(s):  
Samaneh Alijantabar aghouzi

Study on ammonia nitrogen and phosphorus removal using sequencing batch reactor Samaneh Alijantabar Aghouzi * Department of Chemical and Environmental Engineering, Faculty of Engineering Universiti Putra Malaysia, Serdang Malaysia   Thomas S. Y. Choong Sustainable Process Engineering Research Center (SPERC) Universiti Putra Malaysia, Serdang Malaysia   Aida Isma M. I. Centre for Water Research, Faculty of Engineering and the Built Environment SEGi University, Kota Damansara Malaysia   *Corrosponding author’s Email: [email protected]                   Peer-review under responsibility of 3rd Asia International Multidisciplanry Conference 2019 editorial board (http://www.utm.my/asia/our-team/) © 2019 Published by Readers Insight Publisher, lat 306 Savoy Residencia, Block 3 F11/1,44000 Islamabad. Pakistan, [email protected] This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).     _________________________________________________________   Research Highlights   The highest phosphorus and ammonia nitrogen removal efficiencies were 99.5% and 51%, respectively, in 6 hours. Particle size of sludge reduced from 26 μm to 39.81 μm in 60 days. Fourier transform infrared spectroscopy (FTIR) showed that N-O, N–H, S=O and C=N compunds detected. ___________________________________________________________________________   Research Objectives   Ammonia nitrogen and phosphorus removal have becoming more rigorous in permits making it one of the most important and most difficult processes to maintain in wastewater treatment plants. Sequencing batch reactor is a controlled activated sludge process that is able to tackle ammonia nitrogen and phosphorus issues and has some benefits such as having a small-scale system and low construction cost (1). The main goal of this research is to investigate the ability of SBR in treating sewage containing phosphorus and ammonia nitrogen in 6 hours to achieve the allowable effluent discharge standard set by the Department of Environment Malaysia.     Materials and Methods   In this experiment, a sequencing batch reactor with a total volume of 7 L. The mechanical stirrer was used to avoid sludge settling with a speed of 100 rpm. A fine bubble diffuser was used to supply air. The operation time was controlled based on 1 h and 30 mins anaerobic, 2 h and 10 mins anoxic, 1 h and 50 mins aerobic, making the hydraulic retention time (HRT) of 6 hours. 10 L seed sludge and 30 L raw sewage samples were collected weekly from the sewage treatment plant that was located in Selangor and were kept under 4oC in cold room in order to obtain fresh samples. The sludge volume was 30% of raw sewage volume in the reactor and the reactor refilled with 3.5 liters of raw sewage at the start point of the experiment. The experiment was carried out in room temperature of  27±3 oC with the pH value ranging from 6 to 8 and dissolve oxygen value ranging from 0 to 6 mg/L. Phosphorus and ammonia nitrogen were measured according to the APHA method (2). DO and PH were measured by using DO meter (JPB-70A) and PH meter (CT-6821, Shenzhen Kedida Electronic CO).     Results   The highest ammonia nitrogen removal efficiencies observed to be 31.9 %, 10.3 % and 38.8 % at the respective phases of anaerobic, anoxic and aerobic, respectively. Results showed that the phosphorus removal efficiencies for anaerobic, anoxic and aerobic phases were 70.43 %, 19.16%, and 98.58%, respectively in 6 hours. The highest phosphorus removal efficiency recorded was 98.58% that took place in the aerobic phase because of the absence of sufficient nitrate which can inhibit phosphorus uptake during the aerobic phase. The most sensitive process is nitrification that helps to biological oxidation of ammonia to nitrate, which is performed by two types of microorganisms, i.e. ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) (3). Karl et al. claimed that toxic substances inhibit the metabolism of bacteria (4). Mino et al. (5) also stated that nitrification process will not be accomplished in anaerobic phase without the presence of nitrate. This will affect the phosphorus uptake in the aeration phase.   Findings   FTIR spectrum shows that N-O, N–H, S=O and C=N compounds were identified in the sludge. The presence of these compounds might affect the nitrification and denitrification processes and indirectly affecting the degradation the ammonia nitrogen and phosphorus. Sewage sample might also contain heavy metals as the sewage treatment plant was located in the industrial area.     Acknowledgment   The authors gratefully thank the financial and research support of Universiti Putra Malaysia.   References Sathian, S, M Rajasimman, C S Rathnasabapathy, and C Karthikeyan. 2014. “Journal of Water Process Engineering Performance Evaluation of SBR for the Treatment of Dyeing Wastewater by Simultaneous Biological and Adsorption Processes.” Journal of Water Process Engineering 4: 82–90. APHA. Standard Methods For the examination of water and Wastewater 23rd ed. ed. Washington, D.C.2017. Chang HN, Moon RK, Park BG, Lim S, Choi DW. Simulation of sequential batch reactor ( SBR ) operation for simultaneous removal of nitrogen and phosphorus. 2000;23. Karl DM, States U. Nitrogen Cycle ☆. 3rd ed. Encyclopedia of Ocean Sciences, 3rd Edition. Elsevier Inc.; 2018. 1-10 p. Mino T, Loosdrecht MCM van, Heijnen JJ. Microbiology and biochemistry of the EBPR process. Water Res. 1998;32(11):3193–207.


2011 ◽  
Vol 63 (10) ◽  
pp. 2138-2142 ◽  
Author(s):  
X. S. Kang ◽  
C. Q. Liu ◽  
B. Zhang ◽  
X. J. Bi ◽  
F. Zhang ◽  
...  

The application of reversed A2/O process in practice in China is mainly discussed in this paper. As a new process on nitrogen and phosphorus removal, principle and technical features of reversed A2/O process are also summarized. The application in rebuilt wastewater treatment plant shows that reversed A2/O process not only has merits on high nitrogen and phosphorus removal efficiency, but also has merits on energy saving. The application in newly-build wastewater treatment plant shows that infrastructure and equipment investment of reversed A2/O process economized 15% and 10% respectively, compared to conventional A2/O process. The practical application shows that reversed A2/O process is a new nitrogen and phosphorus removal process, which is suitable for China's national conditions.


Sign in / Sign up

Export Citation Format

Share Document