Fuzzy Control of Vehicle Suspension System

2011 ◽  
Vol 383-390 ◽  
pp. 2012-2017 ◽  
Author(s):  
Guo Quan Yang ◽  
You Qun Zhao

In this paper, a semi-active suspension system has been proposed to improve the ride comfort, and a 2 DOF vehicle system is designed to simulate the actions of vehicle suspension system. The purpose of a suspension system is to support the vehicle body and increase ride comfort. The aim of the work described in the paper was to illustrate the application of fuzzy logic technique to the control of a continuously damping automotive suspension system. The ride comfort is improved by means of the reduction of the body acceleration caused by the car body when road disturbances from smooth road and real road roughness. Based on MATLAB fuzzy control toolbox, fuzzy controller is designed. Simulation analysis of suspension system is preceded by using MATLAB/Simulink7.0. The result shows that this control can improve the body acceleration, suspension distortion etc.

2011 ◽  
Vol 110-116 ◽  
pp. 671-676
Author(s):  
Nemat Changizi ◽  
Asef Zare ◽  
Nooshin Sheiie ◽  
Mahbubeh Moghadas

The main aim of suspension system is to isolate a vehicle body from road irregularities in order to maximize passenger ride comfort and retain continuous road wheel contact in order to provide road holding. The aim of the work described in the paper was to illustrate the application of fuzzy logic technique to the control of a continuously damping automotive suspension system. The ride comfort is improved by means of the reduction of the body acceleration caused by the car body when road disturbances from smooth road and real road roughness. The paper describes also the model and controller used in the study and discusses the vehicle response results obtained from a range of road input simulations. In the conclusion, a comparison of active suspension fuzzy control and Proportional Integration derivative (PID) control is shown using MATLAB simulations.


2019 ◽  
Vol 8 (3) ◽  
pp. 1625-1637

A novel efficient control scheme for an active vehicle suspension system is to be designed and simulated in this paper. A half car model has been designed and controlled using two different schemes of standard fuzzy control and bounded interval fuzzy control using MATLAB/SIMULINK. The bounded interval fuzzy control is designed to reduce the uncertainties in the fuzzy sets system and solve the non-linear control problem that the standard fuzzy control cannot handle it. It should be noted that fuzzy logic system is capable of dealing with imprecise concepts and numerous vague but the design of membership functions is nontrivial task. This is because of uncertainty degree that is caused due to road inputs profiles, fuzzy knowledge rules and immeasurable disturbance. The proposed method is expected to be able to mimic the heuristic knowledge of design the membership functions which depends on degree of uncertainty. The membership functions will be generated online during the process in order to deal with uncertainties. The simulation results have demonstrated that the proposed control exhibits better performance and stability as compared to standard fuzzy logic. In addition, the proposed scheme presents a preferable solution and balancing achievement between ride comfort and handling performance. These results demonstrated that the body accelerations and tire dynamic loads will be reduced for the vehicle suspension system in either automobiles or robotics suspension systems.


2013 ◽  
Vol 798-799 ◽  
pp. 378-381
Author(s):  
Li Hong Zhou

Simulation study of the quarter car model was carried out in this paper. The influence of the stiffness of the suspension spring and the damping on the performance of vehicle suspension system was analyzed by the evaluation indexes: transfer function of body acceleration, transfer function of suspension dynamic stroke, transfer function of tire dynamic deflection. The simulation results shown that increasing the stiffness of the suspension spring would reduce the vehicle's ride comfort and increase the value of the first natural frequency of the sprung mass. And increasing the damping would reduce the peak response of the body acceleration which increasing the vehicle's ride comfort, but at the cost of increasing the high frequency vibration.


2018 ◽  
Vol 10 (7) ◽  
pp. 168781401877386 ◽  
Author(s):  
Hongbo Wang

Vehicle suspension system is the key part in vehicle chassis, which has influence on the vehicle ride comfort, handling stability, and security. The extension control, which is not constrained by common control method, could further improve the suspension system performance. The 7 degree-of-freedom suspension model is built. The extension controller is designed according to the function differences. In different extension set domains according to the correlation function, the corresponding control strategy is designed to ensure the suspension system obtains optimal performance in the classical domain and expands the controllable range outside the classical domain as large as possible. By adopting game theory, the domain is optimally divided, and the domain boundary control jump is smoothed by introducing Takagi–Sugeno–Kang fuzzy control into the extension control. Through the simulation and results comparison, it is demonstrated that the extension control could further improve the vehicle ride comfort than the optimal control and the extension control ability can be further promoted through domain game and Takagi–Sugeno–Kang fuzzy control. The analysis of the influence of the extension controller parameter varieties on suspension system performance shows that the error-weighted coefficient and control coefficient have significant effect to the suspension system performance.


2019 ◽  
Vol 12 (4) ◽  
pp. 357-366
Author(s):  
Yong Song ◽  
Shichuang Liu ◽  
Jiangxuan Che ◽  
Jinyi Lian ◽  
Zhanlong Li ◽  
...  

Background: Vehicles generally travel on different road conditions, and withstand strong shock and vibration. In order to reduce or isolate the strong shock and vibration, it is necessary to propose and develop a high-performance vehicle suspension system. Objective: This study aims to report a pneumatic artificial muscle bionic kangaroo leg suspension to improve the comfort performance of vehicle suspension system. Methods: In summarizing the existing vehicle suspension systems and analyzing their advantages and disadvantages, this paper introduces a new patent of vehicle suspension system based on the excellent damping and buffering performance of kangaroo leg, A Pneumatic Artificial Muscle Bionic Kangaroo Leg Suspension. According to the biomimetic principle, the pneumatic artificial muscles bionic kangaroo leg suspension with equal bone ratio is constructed on the basis of the kangaroo leg crural index, and two working modes (passive and active modes) are designed for the suspension. Moreover, the working principle of the suspension system is introduced, and the rod system equations for the suspension structure are built up. The characteristic simulation model of this bionic suspension is established in Adams, and the vertical performance is analysed. Results: It is found that the largest deformation happens in the bionic heel spring and the largest angle change occurs in the bionic ankle joint under impulse road excitation, which is similar to the dynamic characteristics of kangaroo leg. Furthermore, the dynamic displacement and the acceleration of the vehicle body are both sharply reduced. Conclusion: The simulation results show that the comfort performance of this bionic suspension is excellent under the impulse road excitation, which indicates the bionic suspension structure is feasible and reasonable to be applied to vehicle suspensions.


Author(s):  
Yong Guo ◽  
Chuanbo Ren

In this paper, the mechanical model of two-degree-of-freedom vehicle semi-active suspension system based on time-delayed feedback control with vertical acceleration of the vehicle body was studied. With frequency-domain analysis method, the optimization of time-delayed feedback control parameters of vehicle suspension system in effective frequency band was studied, and a set of optimization method of time-delayed feedback control parameters based on “equivalent harmonic excitation” was proposed. The time-domain simulation results of vehicle suspension system show that compared with the passive control, the time-delayed feedback control based on the vertical acceleration of the vehicle body under the optimal time-delayed feedback control effectively broadens the vibration absorption bandwidth of the vehicle suspension system. The ride comfort and stability of the vehicle under random road excitation are significantly improved, which provides a theoretical basis for the selection of time-delayed feedback control strategy and the optimal design of time-delayed feedback control parameters of vehicle suspension system.


Author(s):  
A.S. Emam ◽  
H. Metered ◽  
A.M. Abdel Ghany

In this paper, an optimal Fractional Order Proportional Integral Derivative (FOPID) controller is applied in vehicle active suspension system to improve the ride comfort and vehicle stability without consideration of the actuator. The optimal values of the five gains of FOPID controller to minimize the objective function are tuned using a Multi-Objective Genetic Algorithm (MOGA). A half vehicle suspension system is modelled mathematically as 6 degrees-of-freedom mechanical system and then simulated using Matlab/Simulink software. The performance of the active suspension with FOPID controller is compared with passive suspension system under bump road excitation to show the efficiency of the proposed controller. The simulation results show that the active suspension system using the FOPID controller can offer a significant enhancement of ride comfort and vehicle stability.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Hui Pang ◽  
Ying Chen ◽  
JiaNan Chen ◽  
Xue Liu

As the road conditions are completely unknown in the design of a suspension controller, an improved linear quadratic and Gaussian distributed (LQG) controller is proposed for active suspension system without considering road input signals. The main purpose is to optimize the vehicle body acceleration, pitching angular acceleration, displacement of suspension system, and tire dynamic deflection comprehensively. Meanwhile, it will extend the applicability of the LQG controller. Firstly, the half-vehicle and road input mathematical models of an active suspension system are established, with the weight coefficients of each evaluating indicator optimized by using genetic algorithm (GA). Then, a simulation model is built in Matlab/Simulink environment. Finally, a comparison of simulation is conducted to illustrate that the proposed LQG controller can obtain the better comprehensive performance of vehicle suspension system and improve riding comfort and handling safety compared to the conventional one.


Sign in / Sign up

Export Citation Format

Share Document