Control Simulation Study Based on Recurrent Generalized Congruence Neural Network

2011 ◽  
Vol 383-390 ◽  
pp. 5691-5696
Author(s):  
Tian Yun Yan

In order to meet the real-time demand of neural network control system, the structure and algorithm of self-tuning PID control system based on recurrent generalized congruence neural network(RGCNN) with fast convergence are presented, in which the improved recurrent generalized congruence neural network is adopted for identifier, and the single generalized congruence neuron with three inputs is used as controller. The simulation results of nonlinear dynamical control system show that the proposed RGCNN control system responses quickly and is stable, i.e., the proposed control system based on RGCNN is effective and feasible.

2010 ◽  
Vol 139-141 ◽  
pp. 1749-1752
Author(s):  
Lan Li ◽  
Jiang Ye ◽  
Xue Fei Zheng

In this paper a new control method has been studied in which PID control system was integrated into the neural network. It could overcome some disadvantages such as neural network’s slow rate of convergence and PID’s difficulty in application of multivariate nonlinear systems. A controller of the Electro-hydraulic proportional control stroking mechanism for radial piston pump was designed based on the PID neural network control algorithm. The system responses of system variable control signal of system track were achieved by computer simulation. It was found by PIDNN that the control system could reach steady state in a shorter time, compared with PID control system response time by 65% to 80%. The simulation results showed that the controller for the Electro-hydraulic proportional Radial Piston Pump based PID neural network control algorithm would have a good controlling performance.


CONVERTER ◽  
2021 ◽  
pp. 709-715
Author(s):  
Peibo Li, Peixing Li, Chen Yanpeng

An adaptive neural network control method was proposed to solve the problems such as unstable motion and large trajectory tracking error when the robot arm was disturbed by the external environment.The dynamic equations of the manipulator were given and the dynamic characteristics of the manipulator were studied by using the positive feedback neural network. Then the adaptive neural network control system was designed, and the stability and convergence of the closed-loop system were proved by the Lyapunov function. Later, the model diagram of the robot arm was established, and the dynamics parameters of the manipulator were simulated by MATLAB /Simulink software.At the same time, they were compared with the simulation results of the PID control system for analysis.The simulation results showed that the trajectory tracking error and input torque fluctuation were smaller when the trajectory of the robot arm was disturbed by the external world. When adopting the control method of the adaptive neural network, the robot arm could improve the control precision of the trajectory, thus reducing the jitter of the robot arm motion.


2022 ◽  
Vol 12 (2) ◽  
pp. 754
Author(s):  
Ziteng Sun ◽  
Chao Chen ◽  
Guibing Zhu

This paper proposes a zero-speed vessel fin stabilizer adaptive neural network control strategy based on a command filter for the problem of large-angle rolling motion caused by adverse sea conditions when a vessel is at low speed down to zero. In order to avoid the adverse effects of the high-frequency part of the marine environment on the vessel rolling control system, a command filter is introduced in the design of the controller and a command filter backstepping control method is designed. An auxiliary dynamic system (ADS) is constructed to correct the feedback error caused by input saturation. Considering that the system has unknown internal parameters and unmodeled dynamics, and is affected by unknown disturbances from the outside, the neural network technology and nonlinear disturbance observer are fused in the proposed design, which not only combines the advantages of the two but also overcomes the limitations of the single technique itself. Through Lyapunov theoretical analysis, the stability of the control system is proved. Finally, the simulation results also verify the effectiveness of the control method.


2019 ◽  
Vol 27 (11) ◽  
pp. 2392-2401
Author(s):  
刘 蓉 LIU Rong ◽  
黄大庆 HUANG Da-qing ◽  
姜定国 JIANG Ding-guo

Algorithms ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 97
Author(s):  
Song Zheng ◽  
Chao Bi ◽  
Yilin Song

This paper presents a novel diagonal recurrent neural network hybrid controller based on the shared memory of real-time database structure. The controller uses Data Engine (DE) technology, through the establishment of a unified and standardized software architecture and real-time database in different control stations, effectively solves many problems caused by technical standard, communication protocol, and programming language in actual industrial application: the advanced control algorithm and control system co-debugging difficulties, algorithm implementation and update inefficiency, and high development and operation and maintenance costs effectively fill the current technical gap. More importantly, the control algorithm development uses a unified visual graphics configuration programming environment, effectively solving the problem of integrated control of heterogeneous devices; and has the advantages of intuitive configuration and transparent data processing process, reducing the difficulty of the advanced control algorithms debugging in engineering applications. In this paper, the application of a neural network hybrid controller based on DE in motor speed measurement and control system shows that the system has excellent control characteristics and anti-disturbance ability, and provides an integrated method for neural network control algorithm in a practical industrial control system, which is the major contribution of this article.


Sign in / Sign up

Export Citation Format

Share Document