The Design and Test of HEMP Simulator Based on Coaxial Peaking Technology

2011 ◽  
Vol 383-390 ◽  
pp. 7227-7231
Author(s):  
Li Si Fan ◽  
Hai Guang Guo ◽  
Guang Hui Wei

A HEMP Simulator was constructed based on coaxial peaking technology. The experimental results show that: a HEMP field matching the MIL-STD-464A standard is generated under the bounded wave transmission line when the parameters are selected reasonably; the variation coefficient of output wave parameters such as peaking filed strength, rise time and half time show that the repeatability of the HEMP simulator are very good; there is linear relation between the peaking field strength and the charging voltage of the Marx generator.

2012 ◽  
Vol 608-609 ◽  
pp. 1276-1280
Author(s):  
Chun Yang Jiang ◽  
Sheng Guo Xia

In this paper, a compact TLT is developed basted on the theories of transmission line and a LCR triggered switch is introduced. A compact structure of components and topology is designed to reduce the influence of the total inductance of capacitor discharge circuit. The experimental results indicate that the voltage gain is up to 1.98. A pulse with peak voltage of up to 20kV, duration time of 200ns and rise time of about 25ns is obtained; the TLT could work successfully in 500Hz.


Author(s):  
Marta Gil ◽  
Paris Velez ◽  
Francisco Aznar-Ballesta ◽  
Aran Mesenger-Ruiz ◽  
Jonatan Munoz-Enano ◽  
...  

2016 ◽  
Vol 34 (4) ◽  
pp. 675-686 ◽  
Author(s):  
Z.-L. Pan ◽  
J.-H. Yang ◽  
X.-B. Cheng

AbstractAn anti-resonance pulse forming network (PFN) has been designed, analyzed, and tested for its application in generating quasi-square pulses. According to the circuit simulations, a compact generator based on two/three-section network was constructed. Two-section network is applied in the generator due to its compact structure, while three-section network is employed for generating pulses with higher quality. When two-section network is applied in the generator, the full-width at half-maximum of the load pulse is 400 ns, at the same time, its rise time, flat top and fall time are 90, 180 and 217 ns, respectively. When the three-section network is applied with the same pulse width of the load pulse, the rise time of the output decreases to 60 ns, while the flat top increases to 240 ns and the fall time reduces to 109 ns. Meanwhile, this kind of network could be used to shape the output pulses of generators whose equivalent circuit is LC series discharge network, such as MARX generator, into quasi-square pulses. And the preliminary experiment demonstrates that anti-resonance network could work well on four-stage Marx generators. A sine pulse generated by the four-stage Marx generator is shaped into a quasi-square pulse with voltage of 11.8 kV and pulse width about 110 ns based on two-section anti-resonance network.


1974 ◽  
Vol 16 (3) ◽  
pp. 174-177 ◽  
Author(s):  
I. S. Donaldson ◽  
R. A. Haslett

A fabrication technique is described for a cheap, robust surface thermocouple having a rise time of the order of 5 μs. Experimental results using the thermocouple are also presented.


2011 ◽  
Vol 130-134 ◽  
pp. 1383-1386 ◽  
Author(s):  
Fei Xie ◽  
Bing Cao ◽  
Cheng Long Liu

To study damage effectiveness of strong electro-magnetic pulse to components of equipments, the power density in area of MOS circuit, diodes and transistor of a computer is simulated, using the method of the finite-difference time-domain (FDTD). Coupling laws in different areas are achieved, and then judging the damage efficiency of components. Electromagnetic pulse reflects constantly in computer box, causing power density appears oscillations. Energy gradually declines to zero, for it radiates outward from slots. Field concentration around PCB board results in dissociation of field strength, and slows down the attenuation of energy. Finally, formula of power density at random field strength and rise time is also obtained.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Huaibao Chu ◽  
Xiaolin Yang ◽  
Shuanjie Li ◽  
Weimin Liang

The propagation and attenuation rule of blasting vibration wave parameters is the most important foundation of blasting vibration prediction and control. In this work, we pay more attention to the influence of the damage accumulation effect on the propagation and attenuation rule of vibration wave parameters. A blasting damage accumulation experiment was carried out, the ultrasonic wave velocity of the specimens was measured, and the damage value was calculated during the experiment. The blasting vibration wave was monitored on the surface of the specimens, and its energy was calculated by using the sym8 wavelet basis function. The experimental results showed that with the increase in the number of blasts, the damage continues to increase; however, the vibration velocity and the main frequency decrease continuously, the unfocused vibration wave energy in the zone near to the blasting source is rapidly concentrated in the low-frequency band (frequency bands 1 to 3), and the energy is further concentrated in the low-frequency band in the intermediate zone and zone far from the blasting source. There is a distortion process in which the vibration velocity and the main frequency increase slightly and the energy of the blasting vibration wave converges to the high-frequency band (the 5th band) before the sudden unstable fracture failure of the specimens. The experimental results indicate that the prediction and evaluation of blasting vibration should consider the variation rule of blasting vibration wave parameters synthetically based on the cumulative damage effect, and it is not safe to use only one fixed vibration control standard for the whole blasting operation.


Sign in / Sign up

Export Citation Format

Share Document