Application of GM Yield Criterion in Plastic Zone of ModeⅠCrack and Burst Pressure for Pipeline

2011 ◽  
Vol 399-401 ◽  
pp. 2189-2194 ◽  
Author(s):  
De Wen Zhao ◽  
Can Ming Li ◽  
Liang Yun Lan ◽  
Shun Hu Zhang

Based on GM yield criterion, the analytical solutions for shape and size of mode I crack tip plastic zone and the burst pressure for X70 pipeline steel are derived. Comparing the solutions with those based on Mises and Trasca criteria shows that under plain strain condition the area of plastic zone on GM is between Tresca and Mises solutions, and very close to Mises one. Among the areas Tresca’s is the largest and Mises is the smallest and all three zones are dumbbell shaped. However, for pipeline burst pressure based on Tresca criterion is the smallest and that on Twin shear stress criterion (TSS) is the largest, those on GM and Mises are also very close to each other and lie between Tresca and TSS results.

2014 ◽  
Vol 1078 ◽  
pp. 25-30
Author(s):  
Miao Guan ◽  
Zhao Zhun Zhong

The plastic zones for I, II, III mode crack under small scale yielding are analyzed by MY criterion, and the analytical solutions of the sizes of the plastic zones for plain stress and plain strain states are first obtained. The solutions for I and II mode crack show that the two solutions are functions of the yield stress, stress strength factor and polar angle, while the solution for III mode crack just depends on the yield stress and stress strength factor. Comparison of the plastic zone with those based on Tresca and Mises criteria shows that Tresca criterion predicts the maximum, the result by MY yield criterion lies between them, and is very close to that by Mises criterion. Besides, the relationship of plastic zone between plain stress and plain strain are also discussed.


2007 ◽  
Vol 340-341 ◽  
pp. 477-482
Author(s):  
Ming Bao Li ◽  
Jun Cao ◽  
Shi Qiang Zheng

Fracture properties of softwood under mode I loading perpendicular to the grain are studied in this paper. The stress intensity factor KIC in the R and L directions is measured by the compact tension test using small several specimens. The shape and size of plastic zone in crack tip is determined by numerical simulations based on von Hill yield criterion. The results show that anisotropic material constants do not affect the length of plastic zone along crack direction and it only operates on the plastic zone with θcr≠ 0. Strength ratios α1, α2 and toughness ratios r1, r2, influencing on the plastic zone, are discussed. Comparative analysis shows that r1 and r2 work markedly on the shape and size of plastic zone, whereas α1, α2 do less.


Author(s):  
Ji Bao ◽  
Shulong Zhang ◽  
Wenxing Zhou ◽  
Shenwei Zhang

In this paper, three-dimensional finite element models are developed to simulate full-scale burst tests of corroded pipes containing multiple naturally occurring corrosion anomalies. Both the von Mises and Tresca yield criteria and associated flow rules are employed in finite element analysis (FEA). For the Tresca criterion, the corresponding constitutive model subroutine is developed and incorporated in the FEA. The accuracy of FEA is investigated by comparing the burst pressures observed in the tests and corresponding burst pressures predicted using FEA. The implications of using the von Mises and Tresca criteria for the accuracy of the predicted burst pressure are investigated. Sensitivity analyses are also carried out to investigate the impact on the predicted burst pressure due to the mesh density in the corroded region, characterization of the geometry of the corrosion cluster and different types of element (e.g. solid and shell elements) used in FEA. The results suggest that the Tresca criterion always underestimates the burst pressure and the von Mises yield criterion predicts the burst pressure accurately. This study demonstrates the feasibility of using high-fidelity FEA and the Tresca yield criterion to simulate full-scale burst tests of corroded pipes and therefore establish a large database of burst pressure capacities of corroded pipes that can be used to develop an accurate, practical burst pressure capacity model amenable to the pipeline integrity management practice.


2010 ◽  
Vol 97-101 ◽  
pp. 534-537 ◽  
Author(s):  
Wei Deng ◽  
De Wen Zhao ◽  
Xiao Mei Qin ◽  
Xiu Hua Gao ◽  
Chun Lin Qiu ◽  
...  

Based on mean yield criterion, an analytical solution for the mode I crack tip plastic zone (CTPZ) under small scale yielding was derived. The results reveal that the size of CTPZ determined by MY criterion is between those by Mises’ yield criterion the smallest, and by Tresca’s criterion the largest; while the zone is almost coincide with that by Mises’ one. The size of CTPZ is related to the ratio of fracture toughness to yield strength; with increasing of the ratio, the size of the zone increases, meaning the better of fracture toughness.


2011 ◽  
Vol 127 ◽  
pp. 79-84 ◽  
Author(s):  
Shun Hu Zhang ◽  
De Wen Zhao ◽  
Cai Ru Gao

With MY (mean yield) criterion, the limit load of defect-free pipe elbow under inner pressure is analyzed, and an analytical solution is first obtained. The solution shows that the limit load is a function of wall thicknesst, average radiusr, yield strength as well as curvature radiusR0. The limit load increases with the increase of the curvature radiusR0and will get the same value with the burst pressure of straight pipe ifR0→∞. The limit load calculated by the solution is compared with those based on Tresca, Mises, as well as TSS yield criteria. It is also concluded that Tresca criterion predicts a lower bound to the limit load, while TSS criterion predicts an upper bound one. However, the limit load based on the MY criterion lies just between the TSS and Tresca solutions, most notably, the MY criterion almost has the same prediction precision with Mises solution.


2021 ◽  
Vol 143 (4) ◽  
Author(s):  
Serkan Kangal ◽  
A. Harun Sayı ◽  
Ozan Ayakdaş ◽  
Osman Kartav ◽  
Levent Aydın ◽  
...  

Abstract This paper presents a comparative study on the burst pressure performance of aluminum (Al) liner for type-III composite overwrapped pressure vessels (COPVs). In the analysis, the vessels were loaded with increasing internal pressure up to the burst pressure level. In the analytical part of the study, the burst pressure of the cylindrical part was predicted based on the modified von Mises, Tresca, and average shear stress criterion (ASSC). In the numerical analysis, a finite element (FE) model was established in order to predict the behavior of the vessel as a function of increasing internal pressure and determine the final burst. The Al pressure vessels made of Al-6061-T6 alloy with a capacity of 5 L were designed. The manufacturing of the metallic vessels was purchased from a metal forming company. The experimental study was conducted by pressurizing the Al vessels until the burst failure occurred. The radial and axial strain behaviors were monitored at various locations on the vessels during loading. The results obtained through analytical, numerical, and experimental work were compared. The average experimental burst pressure of the vessels was found to be 279 bar. The experimental strain data were compared with the results of the FE analysis. The results indicated that the FE analysis and ASSC-based elastoplastic analytical approaches yielded the best predictions which are within 2.2% of the experimental burst failure values. It was also found that the elastic analysis underestimated the burst failure results; however, it was effective for determining the critical regions over the vessel structure. The strain behavior of the vessels obtained through experimental investigations was well correlated with those predicted through FE analysis.


Sign in / Sign up

Export Citation Format

Share Document