Study of Heating Effect on Specific Surface Area, and Changing Optical Properties of ZnO Nanocrystals

2011 ◽  
Vol 403-408 ◽  
pp. 1205-1210
Author(s):  
Jaleh Babak ◽  
Ashrafi Ghazaleh ◽  
Gholami Nasim ◽  
Azizian Saeid ◽  
Golbedaghi Reza ◽  
...  

In this work ZnO nanocrystal powders have been synthesized by using Zinc acetate dehydrate as a precursor and sol-gel method. Then the products have been annealed at temperature of 200-1050°C, for 2 hours. The powders were characterized using X-ray diffraction (XRD), UV-vis absorption and photoluminescence (PL) spectroscopy. The morphology of refrence ZnO nanoparticles have been studied using Transmission Electron Microscope (TEM). During the annealing process, increase in nanocrystal size, defects and energy gap quantitative, and decrease in specific surface area have been observed.

2010 ◽  
Vol 4 (2) ◽  
pp. 69-73 ◽  
Author(s):  
Marija Milanovic ◽  
Ivan Stijepovic ◽  
Ljubica Nikolic

Titanate structures were synthesized in highly alkaline solution using hydrothermal procedure. As-prepared powders were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and transmission electron microscopy (TEM). A specific surface area of the powders was measured by BET method. Results confirmed formation of layered trititanates, already after one hour of hydrothermal synthesis. To examine the photocatalytic activity of the as-prepared layered titanates, methylene blue (MB) was employed as a target compound in response to visible light at ambient temperature. It was observed that the specific surface area, size distribution and crystallinity are important factors to get high photocatalytic activity for the decomposition of MB. .


NANO ◽  
2017 ◽  
Vol 12 (09) ◽  
pp. 1750116 ◽  
Author(s):  
Zhenwi Zhang ◽  
Chuanjun Yue ◽  
Jianhen Hu

SiO2 nanoparticles modified with aminopropyl-triethoxysilane (APTES) were used as hard templates for preparing porous MoS2. The method offers the advantages of simple steps, convenient operation, controllable pore size, and a specific surface area. Two morphologies of MoS2 were obtained by using thiourea and L-cysteine as sulfur sources, respectively. Porous MoS2 prepared by using thiourea had a smooth surface, whereas the surface of porous MoS2 prepared with L-cysteine had many burrs. The MoS2 nanomaterials with the respective morphologies were used to catalyze the hydrodeoxygenation (HDO) reaction. The activity of MoS2 prepared with L-cysteine was lower than that prepared with thiourea. Transmission electron microscopy and X-ray diffraction analyses showed that MoS2 had a large sheet-shaped structure and high crystallinity, leading to high reaction activity and high selectivity for cyclohexane. The reaction temperature also influenced the HDO significantly. The mechanism of hydrogenation of phenol was discussed.


2011 ◽  
Vol 485 ◽  
pp. 279-282
Author(s):  
Keiko Fukushi ◽  
Sae Nakajima ◽  
Kazuyoshi Uematsu ◽  
Tadashi Ishigaki ◽  
Kenji Toda ◽  
...  

Anatase TiO2 having high temperature stability and specific surface area was synthesized using a gel precursor in very mild conditions. The precursor gel was obtained by dialysis treatment of Na16Ti10O28–HNO3 solution. The samples were characterized by X-ray diffraction analysis, transmission electron microscopy, Brunner–Emmett–Teller method for specific surface area measurements, and thermogravimetric analysis.


2013 ◽  
Vol 634-638 ◽  
pp. 620-623 ◽  
Author(s):  
Jittima Junsawat ◽  
Nichakan Phumthiean ◽  
Payoon Senthongkaew ◽  
Supakit Achiwawanich

A preparation of novel cobalt-based catalyst on three-dimensionally ordered macroporous (3DOM) silica supporter using poly (methyl methacrylate) monolith as a template has been studied. Monodispersed PMMA colloids were synthesized via an emulsion polymerization, resulting in PMMA spheres with the diameter of 390-400 nm. Two processes were employed for the 3DOM Co/SiO2catalyst fabrications, a single-stage sol-gel synthesis (SG) and incipient wetness impregnation method (IM) on synthesized 3DOM SiO2. Both catalysts were characterized using X-ray Diffraction (XRD), X-ray Absorption Spectroscopy (XAS), Scanning Electron Microscope (SEM) and specific surface area analysis. The XRD and XAS results showed that the doped Co in the 3DOM Co/SiO2(SG) were the mix phase of Co(NO3)2and Co3O4, while, only Co3O4was found in the 3DOM Co/SiO2(IM). The SEM micrographs revealed that both catalysts feature periodic macroporous structure with mean pore diameter of 300-350 nm. Specific surface area of the 3DOM Co/SiO2(IM) and the 3DOM Co/SiO2(SG) catalysts are 195 m2/g and 286 m2/g, respectively.


2016 ◽  
Vol 2016 ◽  
pp. 1-13
Author(s):  
Alice Reznickova Mantlikova ◽  
Jiri Plocek ◽  
Barbara Pacakova ◽  
Simona Kubickova ◽  
Ondrej Vik ◽  
...  

We succeeded in the preparation of CoFe2O4/CeO2 nanocomposites with very high specific surface area (up to 264 g/m2). First, highly crystalline nanoparticles (NPs) of CoFe2O4 (4.7 nm) were prepared by hydrothermal method in water-alcohol-oleic acid system. The oleate surface coating was subsequently modified by ligand exchange to citrate. Then the NPs were embedded in CeO2 using heterogeneous precipitation from diluted Ce3+ sulphate solution. Dried samples were characterized by Powder X-Ray Diffraction, Energy Dispersive X-Ray Analysis, Scanning and Transmission Electron Microscopy, Mössbauer Spectroscopy, and Brunauer-Emmett-Teller method. Moreover, detailed investigation of magnetic properties of the bare NPs and final composite was carried out. We observed homogeneous embedding of the magnetic NPs into the CeO2 without significant change of their size and magnetic properties. We have thus demonstrated that the proposed synthesis method is suitable for preparation of extremely fine CeO2 nanopowders and their nanocomposites with NPs. The morphology and magnetic nature of the obtained nanocomposites make them a promising candidate for magnetoresponsive catalysis.


2013 ◽  
Vol 831 ◽  
pp. 263-266
Author(s):  
Chung Hsin Wu ◽  
Chao Yin Kuo ◽  
Chih Hao Lai ◽  
Wei Yang Chung

This study explored the decolorization of C.I. Reactive Red 2 (RR2) by the ultraviolet (UV)/TiO2, UV/TiO2 + In2O3, and UV/TiO2-In2O3 systems. The TiO2-In2O3 was generated by the sol-gel method and TiO2 + In2O3 was created by mixing TiO2 and In2O3 powders. The surface properties of TiO2, In2O3, and TiO2-In2O3 were analyzed by X-ray diffraction, a specific surface area analyzer, UV-vis spectroscopy, and scanning electron microscopy. The specific surface area of TiO2, In2O3, and TiO2-In2O3 was 29.5, 44.6, and 35.7 m2/g, respectively; additionally, the band gap of TiO2, In2O3, and TiO2-In2O3 was 2.95, 2.64, and 2.91 eV; respectively. The decolorization rate constant fit pseudo-first-order kinetics and that of the UV/TiO2, UV/TiO2 + In2O3, and UV/TiO2-In2O3 systems was 0.0023, 0.0031, and 0.0072 min-1; respectively.


2008 ◽  
Vol 8 (12) ◽  
pp. 6445-6450
Author(s):  
F. Paraguay-Delgado ◽  
Y. Verde ◽  
E. Cizniega ◽  
J. A. Lumbreras ◽  
G. Alonso-Nuñez

The present study reports the synthesis method, microstructure characterization, and thermal stability of nanostructured porous mixed oxide (MoO3-WO3) at 550 and 900 °C of annealing. The material was synthesized using a hydrothermal method. The precursor was prepared by aqueous solution using ammonium heptamolibdate and ammonium metatungstate, with an atomic ratio of Mo/W = 1. The pH was adjusted to 5, and then the solution was transferred to a teflon-lined stainless steel autoclave and heated at 200 °C for 48 h. The resultant material was washed using deionized water. The specific surface area, morphology, composition, and microstructure before and after annealing were studied by N2 physisorption, scanning electron microscopy (SEM), analytical transmission electron microscopy (TEM), and X-Ray diffraction (XRD). The initial synthesized materials showed low crystallinity and high specific surface area around (141 m2/g). After thermal annealing the material showed higher crystallinity and diminished its specific surface area drastically.


2014 ◽  
Vol 87 ◽  
pp. 54-60 ◽  
Author(s):  
A.H. Munhoz ◽  
H. de Paiva ◽  
L. Figueiredo de Miranda ◽  
E.C. de Oliveira ◽  
Raphael Cons Andrades ◽  
...  

Different samples of pseudoboehmite (PB) were synthesized through the sol-gel process, using aluminum nitrate as precursor. The influence of variables on the synthesis and calcinations of the PB on the specific area of the obtained gamma-Alumina were studied. The variables were the ageing temperature (25 and 130o C), addition or not of polyvinyl alcohol to the precursor solution and the ageing time of the PB. The pH adjustment of the precursor solution was made by using ammonium carbonate. The products, which were obtained on different conditions, were then characterized by x-ray diffraction, specific area measurements through the BET process, and by thermal analysis (DTA and TG). After characterization, the synthesis products were calcined at 500°C; during this process the gamma-Alumina transformation was observed. The calcination products were characterized by the same methods (x-ray diffraction, BET, DTA and TG) and the desorption-absorption curves were obtained as well, in order to measure the pore volume of the samples. Finally, the results were analyzed through an experimental factorial planning, which showed that high specific surface area gamma-Al2O3 (around 330m²/g) can be obtained through this process.


Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 836
Author(s):  
Ambra Fioravanti ◽  
Sara Morandi ◽  
Alessia Amodio ◽  
Mauro Mazzocchi ◽  
Michele Sacerdoti ◽  
...  

Thick films of zinc oxide (ZnO) in form of nanospheres or hexagonal prisms and of tungsten-tin (W-Sn) mixed oxides at nominal Sn molar fraction (0.1, 0.3 and 0.5) were prepared. The functional materials were synthesized and characterized by SEM and TEM, X-ray diffraction, specific surface area measurements, UV-Vis-NIR and IR spectroscopies. The gas sensing measurements highlighted that ZnO is more performant in form of nanoprisms, while W-Sn sensors offer a better response towards NOx and ozone with respect to pure WO3.


Clay Minerals ◽  
1988 ◽  
Vol 23 (4) ◽  
pp. 399-410 ◽  
Author(s):  
J. L. Pérez-Rodríguez ◽  
L. Madrid Sánchez del Villar ◽  
P.J. Sánchez-Soto

AbstractDry grinding of pyrophyllite (Hillsboro, USA) has been studied by X-ray diffraction (XRD), specific surface area measurements (BET) and scanning electron microscopy (SEM). At the beginning of the grinding process, some effects such as delamination, gliding and folding of the layers, and decrease in particle size were detected by SEM and XRD, resulting in a large increase in specific surface area, up to a maximum of ∼60 m2·g−1. Marked changes in the structure take place between 30 and 32 mins grinding. Longer grinding times increase the degree of disorder and SEM and specific surface area data suggest that aggregation occurs. XRD results indicate that some residual order persists in the degraded structure.


Sign in / Sign up

Export Citation Format

Share Document