scholarly journals Nanocomposite of CeO2 and High-Coercivity Magnetic Carrier with Large Specific Surface Area

2016 ◽  
Vol 2016 ◽  
pp. 1-13
Author(s):  
Alice Reznickova Mantlikova ◽  
Jiri Plocek ◽  
Barbara Pacakova ◽  
Simona Kubickova ◽  
Ondrej Vik ◽  
...  

We succeeded in the preparation of CoFe2O4/CeO2 nanocomposites with very high specific surface area (up to 264 g/m2). First, highly crystalline nanoparticles (NPs) of CoFe2O4 (4.7 nm) were prepared by hydrothermal method in water-alcohol-oleic acid system. The oleate surface coating was subsequently modified by ligand exchange to citrate. Then the NPs were embedded in CeO2 using heterogeneous precipitation from diluted Ce3+ sulphate solution. Dried samples were characterized by Powder X-Ray Diffraction, Energy Dispersive X-Ray Analysis, Scanning and Transmission Electron Microscopy, Mössbauer Spectroscopy, and Brunauer-Emmett-Teller method. Moreover, detailed investigation of magnetic properties of the bare NPs and final composite was carried out. We observed homogeneous embedding of the magnetic NPs into the CeO2 without significant change of their size and magnetic properties. We have thus demonstrated that the proposed synthesis method is suitable for preparation of extremely fine CeO2 nanopowders and their nanocomposites with NPs. The morphology and magnetic nature of the obtained nanocomposites make them a promising candidate for magnetoresponsive catalysis.

2008 ◽  
Vol 8 (12) ◽  
pp. 6445-6450
Author(s):  
F. Paraguay-Delgado ◽  
Y. Verde ◽  
E. Cizniega ◽  
J. A. Lumbreras ◽  
G. Alonso-Nuñez

The present study reports the synthesis method, microstructure characterization, and thermal stability of nanostructured porous mixed oxide (MoO3-WO3) at 550 and 900 °C of annealing. The material was synthesized using a hydrothermal method. The precursor was prepared by aqueous solution using ammonium heptamolibdate and ammonium metatungstate, with an atomic ratio of Mo/W = 1. The pH was adjusted to 5, and then the solution was transferred to a teflon-lined stainless steel autoclave and heated at 200 °C for 48 h. The resultant material was washed using deionized water. The specific surface area, morphology, composition, and microstructure before and after annealing were studied by N2 physisorption, scanning electron microscopy (SEM), analytical transmission electron microscopy (TEM), and X-Ray diffraction (XRD). The initial synthesized materials showed low crystallinity and high specific surface area around (141 m2/g). After thermal annealing the material showed higher crystallinity and diminished its specific surface area drastically.


2011 ◽  
Vol 485 ◽  
pp. 279-282
Author(s):  
Keiko Fukushi ◽  
Sae Nakajima ◽  
Kazuyoshi Uematsu ◽  
Tadashi Ishigaki ◽  
Kenji Toda ◽  
...  

Anatase TiO2 having high temperature stability and specific surface area was synthesized using a gel precursor in very mild conditions. The precursor gel was obtained by dialysis treatment of Na16Ti10O28–HNO3 solution. The samples were characterized by X-ray diffraction analysis, transmission electron microscopy, Brunner–Emmett–Teller method for specific surface area measurements, and thermogravimetric analysis.


2011 ◽  
Vol 403-408 ◽  
pp. 1205-1210
Author(s):  
Jaleh Babak ◽  
Ashrafi Ghazaleh ◽  
Gholami Nasim ◽  
Azizian Saeid ◽  
Golbedaghi Reza ◽  
...  

In this work ZnO nanocrystal powders have been synthesized by using Zinc acetate dehydrate as a precursor and sol-gel method. Then the products have been annealed at temperature of 200-1050°C, for 2 hours. The powders were characterized using X-ray diffraction (XRD), UV-vis absorption and photoluminescence (PL) spectroscopy. The morphology of refrence ZnO nanoparticles have been studied using Transmission Electron Microscope (TEM). During the annealing process, increase in nanocrystal size, defects and energy gap quantitative, and decrease in specific surface area have been observed.


2010 ◽  
Vol 4 (2) ◽  
pp. 69-73 ◽  
Author(s):  
Marija Milanovic ◽  
Ivan Stijepovic ◽  
Ljubica Nikolic

Titanate structures were synthesized in highly alkaline solution using hydrothermal procedure. As-prepared powders were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and transmission electron microscopy (TEM). A specific surface area of the powders was measured by BET method. Results confirmed formation of layered trititanates, already after one hour of hydrothermal synthesis. To examine the photocatalytic activity of the as-prepared layered titanates, methylene blue (MB) was employed as a target compound in response to visible light at ambient temperature. It was observed that the specific surface area, size distribution and crystallinity are important factors to get high photocatalytic activity for the decomposition of MB. .


2014 ◽  
Vol 79 (8) ◽  
pp. 1007-1017 ◽  
Author(s):  
Mozaffar Abdollahifar ◽  
Reza Zamani ◽  
Ehsan Beiygie ◽  
Hosain Nekouei

The micro-mesopores flowerlike ?-Al2O3 nano-architectures have been synthesized by thermal decomposition method using the synthesized AlOOH (boehmite) as precursor. After calcination at 500?C for 5 h, the obtained flowerlike ?-Al2O3 has similar structure like the AlOOH precursor. X-ray diffraction (XRD), FTIR, TG, FESEM and TEM techniques were used to characterize morphology and structure of the synthesized samples. The specific surface area (BET), pore volume and pore-size distribution of the products were determined by N2 adsorption-desorption measurements. The flowerlike ?-Al2O3 showed BET high specific surface area 148 m2 g-1 with total pore volume 0.59 cm3 g-1.


NANO ◽  
2017 ◽  
Vol 12 (09) ◽  
pp. 1750116 ◽  
Author(s):  
Zhenwi Zhang ◽  
Chuanjun Yue ◽  
Jianhen Hu

SiO2 nanoparticles modified with aminopropyl-triethoxysilane (APTES) were used as hard templates for preparing porous MoS2. The method offers the advantages of simple steps, convenient operation, controllable pore size, and a specific surface area. Two morphologies of MoS2 were obtained by using thiourea and L-cysteine as sulfur sources, respectively. Porous MoS2 prepared by using thiourea had a smooth surface, whereas the surface of porous MoS2 prepared with L-cysteine had many burrs. The MoS2 nanomaterials with the respective morphologies were used to catalyze the hydrodeoxygenation (HDO) reaction. The activity of MoS2 prepared with L-cysteine was lower than that prepared with thiourea. Transmission electron microscopy and X-ray diffraction analyses showed that MoS2 had a large sheet-shaped structure and high crystallinity, leading to high reaction activity and high selectivity for cyclohexane. The reaction temperature also influenced the HDO significantly. The mechanism of hydrogenation of phenol was discussed.


2008 ◽  
Vol 32 ◽  
pp. 13-16 ◽  
Author(s):  
X.J. Li ◽  
Xin Ouyang ◽  
Hong Hao Yan ◽  
G.L. Sun ◽  
F. Mo

In this paper, TiO2 nanopowders are produced by gas-phase detonation method. The powders are analyzed by X-ray diffraction (XRD), transmission electron microscopy (TEM) and specific surface area determination. The results indicate that the powders are mixed crystal of rutile and anatase, and have good dispersibility and high specific surface area. Also, the particle sizes of powders are between 40 to 200 nm which are spheroid and cube. The measurement data of detonation pressures shows that the reaction took place under a deflagration to detonation transition (DDT).


Polymers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1067 ◽  
Author(s):  
Vyacheslav V. Rodaev ◽  
Svetlana S. Razlivalova ◽  
Andrey O. Zhigachev ◽  
Vladimir M. Vasyukov ◽  
Yuri I. Golovin

For the first time, zirconia nanofibers with an average diameter of about 75 nm have been fabricated by calcination of electrospun zirconium acetylacetonate/polyacrylonitrile fibers in the range of 500–1100 °C. Composite and ceramic filaments have been characterized by scanning electron microscopy, thermogravimetric analysis, nitrogen adsorption analysis, energy-dispersive X-ray spectroscopy, and X-ray diffractometry. The stages of the transition of zirconium acetylacetonate to zirconia have been revealed. It has been found out that a rise in calcination temperature from 500 to 1100 °C induces transformation of mesoporous tetragonal zirconia nanofibers with a high specific surface area (102.3 m2/g) to non-porous monoclinic zirconia nanofibers of almost the same diameter with a low value of specific surface area (8.3 m2/g). The tetragonal zirconia nanofibers with high specific surface area prepared at 500 °C can be considered, for instance, as promising supports for heterogeneous catalysts, enhancing their activity.


2005 ◽  
Vol 498-499 ◽  
pp. 618-623 ◽  
Author(s):  
Ana Cristina Figueiredo de Melo Costa ◽  
Lucianna Gama ◽  
M.R. Morelli ◽  
Ruth Herta Goldsmith Aliaga Kiminami

Nanosized spinel nickel ferrite particles have attracted considerable attention and efforts continue to investigate them for their technological importance to the microwave industries, high speed digital tap or disk recording, repulsive suspension for use in levitated railway systems, ferrofluids, catalysis and magnetic refrigeration systems. Nanosize nickel ferrite powders (NiFe2O4) have been prepared by combustion reaction using nitrates and urea as fuel. The resulting powders were characterized by X-ray diffraction (XRD), BET, and transmission electron microscopy (TEM). The results showed nanosize nickel ferrite powders with high specific surface area (55.21 m2/g). The powders showed extensive XRD line broadening and the crystallite size calculated from the XRD line broadening was 18.0 nm. The samples were uniaxially compacted by dry pressing, sintered at 1200°C/2h and characterized by bulk density, SEM and magnetic properties measurements. The samples showed uniform microstructures with grain size of 4.45 μm, maximum flux density of 0.18T, field coercive of the 488 A/m, and hysteresis loss of 47.58 W/kg.


2014 ◽  
Vol 87 ◽  
pp. 54-60 ◽  
Author(s):  
A.H. Munhoz ◽  
H. de Paiva ◽  
L. Figueiredo de Miranda ◽  
E.C. de Oliveira ◽  
Raphael Cons Andrades ◽  
...  

Different samples of pseudoboehmite (PB) were synthesized through the sol-gel process, using aluminum nitrate as precursor. The influence of variables on the synthesis and calcinations of the PB on the specific area of the obtained gamma-Alumina were studied. The variables were the ageing temperature (25 and 130o C), addition or not of polyvinyl alcohol to the precursor solution and the ageing time of the PB. The pH adjustment of the precursor solution was made by using ammonium carbonate. The products, which were obtained on different conditions, were then characterized by x-ray diffraction, specific area measurements through the BET process, and by thermal analysis (DTA and TG). After characterization, the synthesis products were calcined at 500°C; during this process the gamma-Alumina transformation was observed. The calcination products were characterized by the same methods (x-ray diffraction, BET, DTA and TG) and the desorption-absorption curves were obtained as well, in order to measure the pore volume of the samples. Finally, the results were analyzed through an experimental factorial planning, which showed that high specific surface area gamma-Al2O3 (around 330m²/g) can be obtained through this process.


Sign in / Sign up

Export Citation Format

Share Document