Measurements of Software Trustworthiness Based on Axiomatic Design

2011 ◽  
Vol 403-408 ◽  
pp. 400-404
Author(s):  
Bin Yang

Trustworthy software is more and more important. Through studying the basic characters of trustworthy software and the substance of axiomatic design, the method to measure trustworthiness of software based on axiomatic design is creatively proposed. Applying information axiom and weakest pre-conditions for any command C with a post-condition R, the measurement model of trustworthy software is set up.

2014 ◽  
Vol 216 ◽  
pp. 310-315
Author(s):  
Felicia Veronica Banciu ◽  
George Drăghici ◽  
Eugen Pămîntaş

the paper proposes an axiomatic design view of orientation schemes used in fixture design, in context of using the axiomatic design rules and guidance to fixture design. In this paper the axiomatic design, matrix and rules are applied to orientation schemes in order to see what kind of designs result (uncoupled, decoupled) and how can be applied the information axiom to choose among the orientation schemes that one (s) that are best suited for the declared purposes-minimum orientation errors.


2014 ◽  
Vol 902 ◽  
pp. 351-356
Author(s):  
Ying Jie Wu ◽  
Qi Gao ◽  
Gang Liu ◽  
Ting Xu

In order to reduce time and cost in mechanical product design wizards development work, the Mechanical Product Design Wizard Rapid Development Platform (MPDW-RDP) was established. According to the Independence Axiom, the system architecture of the MPDW-RDP was obtained, then, the MPDW-RDP had been implemented by taking advantage of existing mature software and components in accordance with the Information Axiom, at last, application case indicated that this system can rapidly develop different kinds of mechanical product design wizard.


Robotica ◽  
2009 ◽  
Vol 27 (3) ◽  
pp. 425-445 ◽  
Author(s):  
Wenfu Xu ◽  
Bin Liang ◽  
Cheng Li ◽  
Yu Liu ◽  
Yangsheng Xu

SUMMARYSpace robotic systems are expected to play an increasingly important role in the future. Unlike on the earth, space operations require the ability to work in the unstructured environment. Some autonomous behaviors are necessary to perform complex and difficult tasks in space. This level of autonomy relies not only on vision, force, torque, and tactile sensors, but also the advanced planning and decision capabilities. In this paper, the authors study the autonomous target capturing from the issues of theory and experiments. Firstly, we deduce the kinematic and dynamic equations of space robotic system. Secondly, the visual measurement model of hand–eye camera is created, and the image processing algorithms to extract the target features are introduced. Thirdly, we propose an autonomous trajectory planning method, directly using the 2D image features. The method predicts the target motion, plans the end-effector's velocities and solves the inverse kinematic equations using practical approach to avoid the dynamic singularities. At last, numeric simulation and experiment results are given. The ground experiment system is set up based on the concept of dynamic simulation and kinematic equivalence. With the system, the experiments of autonomous capturing a target by a free-floating space robot, composed of a 6-DOF manipulator and a satellite as its base, are conducted, and the results validate the proposed algorithm.


2014 ◽  
Vol 644-650 ◽  
pp. 1234-1239
Author(s):  
Tao He ◽  
Yu Lang Xie ◽  
Cai Sheng Zhu ◽  
Jiu Yin Chen

This template explains and demonstrates how to design a measurement system based on the size of the linear structured light vision, the system could works at realized the high precision and fast measurement of the size of mechanical parts, and accurate calibration of the system. First of all, this paper set up the experimental platform based on linear structured light vision measurement. Secondly, this paper established a system of measurement model, and puts forward a new method of calibration of structured light sensor and set up the mathematical model of sensor calibration. This calibration method only need to use some gage blocks of high precision as the target, the target position need not have a strict requirements, and the solving process will be more convenient, much easier to field use and maintenance. Finally, measuring accuracy on the system by gage blocks with high precision is verified, the experiment shows that measurement accuracy within 0.050 mmin the depth of 0-80 - mm range. This system can satisfy the demands of precision testing of most industrial parts .with its simple calibration process and high precision, it is suitable for the structured light vision calibration.


2013 ◽  
Vol 411-414 ◽  
pp. 2511-2515
Author(s):  
Hou Xing You

Axiomatic design theory is a popular methodology for product design scheme evaluation in recent years. However, as information axiom has some limitation for information content of non-functional attributes, the application of axiomatic design theory is bound. Therefore, a new method is proposed for product design scheme evaluation in this paper, which is the generalized information content calculation, and the proposed method avoids the shortcoming of traditional information content calculations. Finally, the proposed method is applied in a case study, and experimental result shows the feasibility of the proposed method.


Author(s):  
Sergei Chekurov ◽  
Kretzschmar Niklas ◽  
Marco Rossoni ◽  
Davide F. Redaelli ◽  
Giorgio Colombo

Abstract Axiomatic design has the potential to help designers understand the increased design freedom and limitations of additive manufacturing prior to starting the actual design process. The purpose of this study is to verify the usefulness of Axiomatic Design in the design process of complex additively manufactured components. The article uses a case study involving the design of a non-assembly turbine to demonstrate that Axiomatic Design can be applied as a supportive tool to acquire information on new limitations imposed by additive manufacturing, such as minimum wall thickness and maximum size of parts. The use of axiomatic design is demonstrated by describing the process of decomposition of the non-assembly turbine and examining the suitability of the general design according to the independence axiom. The resulting decomposition chart is subsequently used as a basis by the authors to design individually two competing designs of a turbine. Finally, the information axiom is used to determine the design with the lowest information content according to design (part and support volume), performance (pressure drop) and economic parameters (cost).


2019 ◽  
Vol 301 ◽  
pp. 00008
Author(s):  
Christopher Spalding ◽  
ZiXiao Wei ◽  
Anthony Yarkov

Axiomatic Design was applied in an undergraduate student-led project which culminated in the creation of an agile ergonomic monitor stand, a solution designed to optimise the productivity and working conditions of the office environment. The customer domain was determined using a Mendelow’s Stakeholder Analysis followed by contextual inquiries and lead user interviews. These customer needs were organised into different levels via Maslow’s Hierarchy and redefined in terms of functional requirements. The functional requirements were decomposed and classified using the Kano Customer Satisfaction and Long Tail Models, and ultimately organised into a functional requirement tree. Design constraints were considered and listed, and the customer and functional domains were compared using a House of Quality. This allowed potential design paths to be devised with respect to the chosen functional requirements. The path involving the smart ergonomic stand was chosen from a number of potential products assessed against the functional requirements by listing the potential design parameters in a morphologicalmatrix. Concepts were designed by creating combinations of these design parameters, with their suitability being judged using the Independence Axiom. The physical form of the solution was inspired using biological sources. The final details of the design were chosen using the Information Axiom to determine their suitability in practical implementation allowing the final concept to be produced in a 3D CAD model.


Sensors ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 1280 ◽  
Author(s):  
Razvan Itu ◽  
Radu Gabriel Danescu

Cameras are sensors that are available anywhere and to everyone, and can be placed easily inside vehicles. While stereovision setups of two or more synchronized cameras have the advantage of directly extracting 3D information, a single camera can be easily set up behind the windshield (like a dashcam), or above the dashboard, usually as an internal camera of a mobile phone placed there for navigation assistance. This paper presents a framework for extracting and tracking obstacle 3D data from the surrounding environment of a vehicle in traffic, using as a sensor a generic camera. The system combines the strength of Convolutional Neural Network (CNN)-based segmentation with a generic probabilistic model of the environment, the dynamic occupancy grid. The main contributions presented in this paper are the following: A method for generating the probabilistic measurement model from monocular images, based on CNN segmentation, which takes into account the particularities, uncertainties, and limitations of monocular vision; a method for automatic calibration of the extrinsic and intrinsic parameters of the camera, without the need of user assistance; the integration of automatic calibration and measurement model generation into a scene tracking system that is able to work with any camera to perceive the obstacles in real traffic. The presented system can be easily fitted to any vehicle, working standalone or together with other sensors, to enhance the environment perception capabilities and improve the traffic safety.


Sign in / Sign up

Export Citation Format

Share Document