Effect of Low-Temperature Frit on the Sintering Behavior and Properties of 0.95K0.49Na0.51NbO3-0.05LiSbO3 Lead-Free Piezoceramics

2011 ◽  
Vol 412 ◽  
pp. 290-293
Author(s):  
Zhu Mei Wang ◽  
Yue Ming Li ◽  
Run Run Li ◽  
Zong Yang Shen ◽  
Yan Hong

The effects of low-temperature frit Li2O-Na2O-K2O-B2O3-SiO2-CaO-BaO-ZnO (abbreviated as BS) on the sintering behavior and electrical properties of 0.95K0.49Na0.51NbO3- 0.05LiSbO3 (abbreviated as KNN-LS) lead-free piezoceramics were investigated. The sintering temperature of the KNN-LS ceramics can be reduced from 1080 °C to 1000 °C due to the addition of BS frit. For the 0.5 wt% BS-doped KNN-LS ceramics, which are sintered at reduced temperature of 1000 °C for 2 h, remain relatively high piezoelectric constant d33 (195 pC/N) and planar electromechanical coupling coefficient kp (40.7%). In addition to other optimization effects, such as reduction of dielectric loss from 3.6% to 2.7% and increment of mechanical quality factor Qm from 48 to 70, this BS frit was experimentally proved to be good for low temperature sintering of KNN-based ceramics while maintaining high piezoelectric response.

2013 ◽  
Vol 423-426 ◽  
pp. 459-462
Author(s):  
Hai Tao Li ◽  
Xiao Bo Hong ◽  
Hong Qiong Huang ◽  
Jin Feng Gong ◽  
Zhi Yuan Cheng ◽  
...  

Alkali niobate lead-free piezoelectric ceramics with nominal compositions [(Na0.52K0.48)0.94+ xLi0.06-x](Nb0.94Sb0.06)O3 ((NK)xLNS) were prepared by normal sintering. Crystalline phase, piezoelectric properties and sintering behavior of (NK)xLNS ceramics were investigated with a special emphasis on the influence of alkli metal content. The x-ray diffraction patterns and the corresponding calculation of lattice parameters indicated that a phase transition from tetragonal to orthorhombic symmetry occurs as x=0.01, resulting in enhanced piezoelectric constant and planar electromechanical coupling coefficient of 266 pC/N and 38.5%, respectively. With x=0.01, the ceramics sintered at 1050 C show higher density and better electrical properties. Our results indicate the importance of sintering temperature and elaborate compositional control for enhancing piezoelectric properties in niobate-based ceramics.


2018 ◽  
Vol 879 ◽  
pp. 51-56
Author(s):  
Tawee Tunkasiri ◽  
Jerapong Tontrakoon ◽  
Gobwute Rujijanagul ◽  
Uraiwan Intatha ◽  
Kamonpan Pengpat ◽  
...  

The work is focused on an attempt to develop a route for the fabrication of piezoceamic-polymer composites having (1-3) type connectivity. The process included the extrusion of rods of diameter approximately 200 mm. A commercial piezoelectric, PC-5 was modified by addition of a lithium/bismuth based glass former together with excess PbO to lower the sintering temperature to about 1000 °C. The fast firing sintering was employed. The rods were assembled and impregnated with an epoxy resin to form 1-3 composites containing approximately 50 and 20 vol% piezoceramic. The measurement values showed that, the piezoelectric constant, d33= 232 pCN-1and 215 pCN-1, thickness electromechanical coupling coefficient, kt= 0.51 and 0.5 and the mechanical quality factor, Qm= 14 and 5 for the composites containg PZT rods at 50 vol% and 20 vol% respectively. Their acoustic impedances were 5.1 and 3.6 for the 50 vol% and 20 vol% of PZT rods respectively. The results show that with lower volume% of PZT could result in lower acoustic impedance which can be further improved for biomedical imaging and hydrophone applications.


2010 ◽  
Vol 123-125 ◽  
pp. 121-124 ◽  
Author(s):  
Xin Cheng ◽  
Shuang Shuang Liao ◽  
Shi Feng Huang ◽  
Li Li Guo

Sulphoaluminate cement and Lead Niobium-Magnesium Zirconate Titanate ceramic [P(MN)]ZT were used as matrix and functional phase respectively to fabricate 1-3-2 cement-based piezoelectric composites by dice and filling technique. The influences of base thickness on piezoelectric properties, electromechanical properties and acoustic impedance properties of the composites were discussed. The results show that as the base thickness increases, the piezoelectric stain factor d33 increases gradually, while the piezoelectric voltage factor g33 decreases. The planar electromechanical coupling coefficient Kp exhibits the trend of decrease, while the thickness electromechanical coupling coefficient Kt and acoustic impedance show the increasing trend. The mechanical quality factor Qm reaches the minimum (1.49) when base thickness is 2.00 mm. The results reveal that the 1-3-2 piezoelectric composite will be suitable for application by changing the base thickness.


2014 ◽  
Vol 602-603 ◽  
pp. 822-825
Author(s):  
Ling Peng ◽  
Min Hong Jiang ◽  
Zheng Fei Gu ◽  
Gang Cheng

Lead-free piezoelectric 0.97 K0.5Na0.5NbO3-0.03 AlFeO3(KNN-AF) ceramics were prepared at low temperature of 980 °C to 1020 °C by the conventional ceramic process. The effect of sintering temperature on the crystal structure, density and electrical properties of the ceramics was investigated. The results indicate that KNN-AF ceramics sintered at an low temperature of 1000 °C exhibit high electrical and piezoelectric properties, with piezoelectric constantd33=116ρC/N, and electromechanical coupling factorkp= 32.9%, polarization (Pr) wasPr=21.8 μC/cm2and curie temperatureTC=382°C. This also indicates that KNN-AF ceramics are promising candidate materials for lead-free piezoelectric applications.


2020 ◽  
Vol 993 ◽  
pp. 791-798
Author(s):  
Haibibu Aziguli ◽  
Tao Zhang ◽  
Ping Yu

Ba0.85Ca0.15Ti0.9Zr0.1O3 (BCTZ) ceramics, one of the lead-free pizoelectric materials, were focused due to the environmental concern against lead. A modified BCTZ powder sol-gel fabrication process was experimentally introduced with the addition of glycerol, in order to provide an effective approach to optimize the piezoelectric response of BCTZ ceramics. The results showed that the piezoelectric properties enhanced in terms of the piezoelectric coefficient of d33, 510 pC/N and the electromechanical coupling coefficient of kp, 0.501. The enhancement in electrical properties, such as dielectric, ferroelectric and piezoelectric, could be related to the homogenous microstructure and larger grain size of BCTZ ceramic powders after the introduction of glycerol during the modified sol-gel strategy.


2014 ◽  
Vol 1061-1062 ◽  
pp. 83-86
Author(s):  
Hong Wu ◽  
De Yi Zheng

In this paper, the effects of different sintering temperature on the microstructure and piezoelectric properties of Pb(Nb2/3Zn1/3)0.03(Zr52Ti48)0.97O3(PNZZT) ceramic samples were investigated. The Pb(Nb2/3Zn1/3)0.03(Zr52Ti48)0.97O3 ceramics materials was prepared by a conventional mixed oxide method. In the period of the experiment, the relationship between crystallographic phase and microstructure were analyzed by X-ray diffraction(XRD) and scanning electron microscopy(SEM) respectively. The XRD patterns shows that all of the ceramic samples are with a tetragonal perovskite structure. Along with sintering temperature increased and the x is 0.03, the grain size gradually become big. Through this experiment, it has been found that when the x is 0.03 and sintered at 1130°C for 2 h, the grains grow well, the grain-boundary intersection of the sample combined well and the porosity of the ceramics decreased, an excellent comprehensive electrical properties of the Pb(Nb2/3Zn1/3)0.03(Zr52Ti48)0.97O3 samples can be obtained. Its best electrical properties are as follows: dielectric constant (ε) is 1105, dielectric loss(tg) is 0.017, electromechanical coupling coefficient (Kp) is 0.287, piezoelectric constant(d33) is 150PC/N


2007 ◽  
Vol 336-338 ◽  
pp. 199-202
Author(s):  
Qiang Chen ◽  
De Jun Lan ◽  
Yi Chen ◽  
Du Min Lin ◽  
Xi Yue ◽  
...  

Lead-free piezoelectric ceramics lithium sodium potassium niobate (LixNayK1-x-y)NbO3 (LNKN100x/100y) have been synthesized by a conventional solid state process. The effects of MnO2 addition on the properties of (LixNayK1-x-y)NbO3(x=0.06, y=0.5)(LNKN6/50) ceramics were investigated. It was found that a morphotropic phase boundary (MPB) between orthorhombic and tetragonal phases is in the composition range 0.05<x<0.07. The piezoelectric constant d33 and the planar electromechanical coefficient kp of LNKN6/50 ceramics reach 222pC/N and 39%, respectively. As the amount of MnO2- doped increases, dielectric constant, piezoelectric constant and Curie temperature Tc of LNKN:Mn ceramics decreased, while mechanical quality factor Qm of LNKN6/50:Mn increased prominently compared to pure LNKN6/50 ceramics. The addition of MnO2 can also decrease the sintering temperature effectively of LNKN6/50 ceramics.


2010 ◽  
Vol 663-665 ◽  
pp. 1028-1031
Author(s):  
Yue Ming Li ◽  
Hua Zhang ◽  
Zhu Mei Wang ◽  
Yan Hong ◽  
Zong Yang Shen

The sintering behavior and microwave dielectric properties of the (Ca0.9375Sr0.0625)0.25(Li0.5Sm0.5)0.75TiO3 (CSLST) ceramics doped with different amounts of Li2O-B2O3-SiO2-CaO-Al2O3 (LBSCA) glass were investigated. The sintering temperature of the CSLST ceramics can be effectively reduced over 200oC due to the addition of LBSCA glass. For the 5 wt% LBSCA-doped CSLST ceramics, which are sintered at only 1000 oC for 5 h, show optimum microwave dielectric properties as follows: εr=84.74, Qf=2446 GHz and τf=-12.48 ppm/oC.


Sign in / Sign up

Export Citation Format

Share Document