Study on Recovery of High Temperature Waste Gas from Rotary Hearth Furnace

2011 ◽  
Vol 415-417 ◽  
pp. 472-477
Author(s):  
Jie Qin ◽  
Gong Guo Liu ◽  
Qiu Ting Wu ◽  
Xiao Le Zha

The situation of heat recovery of the waste gas with high temperature produced by rotary hearth furnace has been introduced at first, and further more, on the base of actual instance of the pilot which named as comprehensive utilization pilot of vanadium-titanium magnetite in Pangang. Several schemes about the heat recovery of high temperature waste gas have been proposed. The operation conditions of the scheme applied by the pilot also have been introduced. With the application of this scheme, it can make full recovery of the waste heat and 55% of energy can be recovered. Making full use of the heat of waste gas adapts to the social demand of energy conservation and emission reduction and gains better economic and social benefits.

Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5886
Author(s):  
Xinxing Lin ◽  
Chonghui Chen ◽  
Aofang Yu ◽  
Likun Yin ◽  
Wen Su

To efficiently recover the waste heat of mobile engine, two advanced transcritical power cycles, namely split cycle and dual pressure cycle, are employed, based on the recuperative cycle. Performances of the two cycles are analyzed and compared through the development of thermodynamic models. Under given gas conditions, seven high-temperature working fluids, namely propane, butane, isobutane, pentane, isopentane, neopentane, and cyclopentane, are selected for the two cycles. At the design system parameters, the highest work 48.71 kW, is obtained by the split cycle with butane. For most of fluids, the split cycle has a higher work than the dual pressure cycle. Furthermore, with the increase of turbine inlet pressure, net work of the split cycle goes up firstly and then decreases, while the work of dual pressure cycle increases slowly. For the split cycle, there exists a split ratio to get the maximum network. However, for the dual pressure cycle, the larger the evaporation temperature, the higher the net work. On this basis, system parameters are optimized by genetic algorithm to maximize net work. The results indicate that the highest work 49.96 kW of split cycle is obtained by pentane. For the considered fluids, except cyclopentane, split cycle always has a higher work than dual pressure cycle. Due to the higher net work and fewer system components, split cycle is recommended for the engine waste heat recovery.


Author(s):  
Yufeng Wang ◽  
Shuai Zhao ◽  
Shien Hui ◽  
Qinxin Zhao ◽  
Qulan Zhou

During ferroalloy production, a large quantity of waste gas can be utilized to generate steam and electric power. In this paper, 4 detailed thermodynamic models of single-pressure (SP) and dual-pressure (DP) waste heat recovery power generation systems are presented, to analyze the impact of the steam pressure, steam temperature and pinch temperature difference on power generating capacity. By comparing the performance of typical systems, more reasonable thermodynamic models and their parameters are proposed. It is found that the power generation capacity of dual-pressure system is higher than that of the single-pressure system, but SP system is much simpler. Using superheated steam in deaerator reduces the efficiency of heat recovery power generation systems by 1.8%. The fluctuation of waste gas source affects the power generation greatly. It should be considered when more reasonable ranges for the main parameters are required. With the improvement of thermodynamic system and parameter optimization, the gross power is increased by 15% for SP system and 17% for DP system, corresponding to the steam parameters of 3.0MPa/400°C and 6.0MPa/400°C.


2020 ◽  
Vol 175 ◽  
pp. 115299 ◽  
Author(s):  
Chenglong Wang ◽  
Simiao Tang ◽  
Xiao Liu ◽  
G.H. Su ◽  
Wenxi Tian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document