Research on Intelligent Synchronization Control of Erecting System Driven by Two Hydraulic Cylinders

2011 ◽  
Vol 422 ◽  
pp. 167-171 ◽  
Author(s):  
Qin He Gao ◽  
Wen Liang Guan

The synchronization control problem of a large equipment erecting system driven by two oil cylinders side-by-side is analyzed. A closed loop control scheme of hydraulically driven erecting system based on electro-hydraulic proportion control valve is given. Considering the existence of time-varying parameters of hydraulic system, intelligent PID control algorithm is implemented by adding neurotic adaptive element control approach to improve the adaptive control capacity of the controller. Simulation results show that the intelligent PID control algorithm is more effective than conventional method for the erecting system synchronization control.

2013 ◽  
Vol 365-366 ◽  
pp. 874-877
Author(s):  
Chang Hai Li ◽  
Yuan Tao Yu ◽  
Shi Yang Ma ◽  
Yan Chun Liu

Incremental PID has its shortcomings: great integral truncation effect, static error and spillover affect. In the control system, the controller system is required having a quick response speed, and also a certain anti-interference ability. When adopting the improved differential PID control algorithm, only the output differential is made, instead of the given values. So, when a given value changes, the output will not change, and the controlled quantity change is usually mild, in which case the control accuracy is improved, and the system dynamic characteristics is greatly improved.


Author(s):  
Hao Chen ◽  
Zhenzhen Zhang ◽  
Huazhang Wang

This paper investigates the problem of robust H ∞ control for linear systems. First, the state-feedback closed-loop control algorithm is designed. Second, by employing the geometric progression theory, a modified augmented Lyapunov–Krasovskii functional (LKF) with the geometric integral interval is established. Then, parameter uncertainties and the derivative of the delay are flexibly described by introducing the convex combination skill. This technique can eliminate the unnecessary enlargement of the LKF derivative estimation, which gives less conservatism. In addition, the designed controller can ensure that the linear systems are globally asymptotically stable with a guaranteed H ∞ performance in the presence of a disturbance input and parameter uncertainties. A liquid monopropellant rocket motor with a pressure feeding system is evaluated in a simulation example. It shows that this proposed state-feedback control approach achieves the expected results for linear systems in the sense of the prescribed H ∞ performance.


2014 ◽  
Vol 525 ◽  
pp. 583-587
Author(s):  
Bing Tu ◽  
Wei Zhang ◽  
Teng Xi Zhan

This paper presented a excitation liquid-cooled retarder control system based on a microprocessor MC9SXS128. In order to achieve the constant speed, It used PWM to adjust the output current of excitation liquid-cooled retarder. It analyzed and calculated the inductance value in PWM output circuit and also analyzed the excitation liquid-cooled retarder control systematical mathematical model . It divided the brake stalls based on the current flowing through the field coil. by adding the PID closed-loop control system, the retarder could quickly reach the set speed. It tested the PID control algorithm at the experiments in retarder drum test rig and the results show that the control algorithm has good control performance to meet the application requirements.


2011 ◽  
Vol 135-136 ◽  
pp. 1179-1182
Author(s):  
Jia Ao Yu ◽  
Min Cang Fu

The article tracks the fruit-trees robot, and analyzes the fruit-trees robot’s dual-motor control system. Based on the speed incremental PID closed-loop control algorithm of the step DC motor, the PID controller’s proportional coefficient, integral coefficient and differential coefficient is concluded. It demonstrates from the stimulations and experiments that the usage of speed incremental PID control do better at the response speed and stability than the open-loop control motor when the robot is run by a straight line on the ground at the 3000rpm.


2013 ◽  
Vol 313-314 ◽  
pp. 1100-1104
Author(s):  
En Zhe Song ◽  
Chang Xi Ji ◽  
Mei Liang Yin ◽  
Jun Sun ◽  
Cheng Shun Yin

This paper establishes the mathematical model of the volume speed-modulating system and simulates dynamically with Matlab/Simulink. Provide a theoretical basis for algorithm of close loop control [ of the three variables which are diesel engines, variable pump and variable motor. Use PID control algorithm, through simulation and analysis, find out the parameter optimization adjustment rule [2,, seek matching operation between three variables. Provide a theoretical basis for the study on dynamic system of full-hydraulic loaders and have very important practical significance in realizing high efficiency energy saving and reducing energy consumption.


2021 ◽  
Vol 268 ◽  
pp. 01067
Author(s):  
Haiming Xu ◽  
Lanzhu Zhang

Valve positioner is the core component of the pneumatic control valve. A new software and hardware design scheme of intelligent valve positioner is presented in this paper. The circuit composition of each part of the intelligent valve positioner is introduced in hardware part. Based on it, a hardware solution to realize HART ‘multi-point’ communication is proposed in this research. In the software design, a novel combined PID control algorithm is proposed to solve the nonlinear problem caused by the friction between the valve stem and the packing during the control process. Simulation results show that the method proposed in this paper is better than traditional PID method and fuzzy PID method. The software and hardware design scheme of the valve positioner proposed in this paper has certain guiding significance for the development of related products.


2020 ◽  
Vol 24 (5 Part B) ◽  
pp. 3069-3077
Author(s):  
Feilong Zheng ◽  
Yundan Lu ◽  
Shuguang Fu

In view of the problems of large overshoot and large oscillation frequency in cur?rent furnace temperature control, based on the development of intelligent control theory, expert control, fuzzy control, and neural network control in intelligent control theory are combined with proportional integral derivative (PID) control. The intelligent PID control algorithm is used to carry out numerical simulation and experimental research on these several control algorithms. The results show that the adjustment effect of the intelligent PID control algorithm is significantly better than the traditional PID control algorithm. Among them, the fuzzy self-tuning PID control algorithm and the fuzzy immune PID control algorithm are feasible in the application of furnace temperature control. The neural network PID control algorithm It also has good development and application potential.


Sign in / Sign up

Export Citation Format

Share Document