Experimental Investigation on Conventional Grinding of TC4 and TC11 Using SiC Abrasive

2012 ◽  
Vol 426 ◽  
pp. 52-55
Author(s):  
Guo Giang Guo ◽  
Zhi Qiang Liu ◽  
Qing Long An ◽  
Ming Chen

This paper investigates the machinability of TC4 and TC11 in conventional grinding using SiC abrasive. The experiment result indicated that TC11 is more difficult to grind than TC4 because of its higher strength and ductility. Ground surface was in a state of high tensile residual stress to each material, thermal cycling of surface layer had the greatest effect. The ground surface experienced microstructure alteration, a heat-affected zone (HAZ) and plastically deformed layer were observed.

1995 ◽  
Vol 39 ◽  
pp. 331-338
Author(s):  
Yoshihisa Sakaida ◽  
Keisuke Tanaka ◽  
Shintaro Harada

A new method of X-ray stress measurement was proposed to estimate non-destructively the steep residual stress distribution in the surface layer of ground Si3N4. We assumed an exponential decrement of the residual stress near the ground surface, and derived a formula for the lattice strain as a function of sin2Ψ. In the experiments, the diffraction angles were measured on the ground surface for a widest possible range of sin2ѱ using an Ω-goniometer. In order to measure the diffraction angle at very high sin η values, a scintillation counter was located on the -η side and an incident X-ray beam impinged on the ground surface with a very low angle from the +η side using the glancing incidence X-ray diffraction technique. A strong non-linearity was found in the 20-sin2ѱ diagrams especially at very high ѱ -angles. From the analysis of non-linearity, the stress distribution in the surface layer was determined. Tine residual stress took the maximum compression of 2 GPa at a depth of about 0.5 μm from the surface, and then diminished to zero at about 25 μm in depth. In the close vicinity of the ground surface, the compressive residual stress was relieved because of both the surface roughness and microcracking induced during the grinding process.


Author(s):  
Masahiko YOSHINO ◽  
Takahiro SHIRAKASHI ◽  
Toshiyuki OBIKAWA

2013 ◽  
Vol 768-769 ◽  
pp. 550-556 ◽  
Author(s):  
Ke Zhan ◽  
Chuan Hai Jiang ◽  
Henry Pan

Shot peening is an important surface treatment which can induce compressive residual stress and refine micro-structure in the deformed surface layer. In this paper, the conventional shot peening, dual shot peening and triple shot peening have been applied to S30432 austenitic stainless steel. The residual stress and micro-structure in the deformed layer were investigated by X-ray diffraction method. The results revealed that a compressive residual stress field was induced in the deformed layer for all shot peening conditions. As the shot peening step increased, the compressive residual stresses increased in near surface layer, and then deceased faster in deeper deformed layer. In terms of microstructure, the domain size increased, while the micro-strain decreased with the depth increasing in the deformed layer. Compare with the effect of three different shot peening method, triple shot peenng is more effective to optimize the compressive residual stress, microstructure and micro-hardness of S30432 austenitic stainless steel.


2010 ◽  
Vol 126-128 ◽  
pp. 899-904 ◽  
Author(s):  
Guo Giang Guo ◽  
Zhi Qiang Liu ◽  
Xiao Jiang Cai ◽  
Qing Long An ◽  
Ming Chen

This paper investigates the surface integrity of Ti-6Al-4V in conventional grinding using SiC abrasive, it includes surface roughness, surface topography, surface residual stress and metallurgical structure alteration. The experiment result indicated that grinding depth and feed rate have significant effect on surface roughness. Workpiece ground surface was free of crack, but severe plastic deformation layer and light burn appeared because of chemical reactions and mechanical factors. Ground surface was in a state of high tensile residual stress, thermal cycling of surface layer had the greatest effect. The machined surface experienced microstructure alteration on the top layer of ground surface, a heat-affected zone (HAZ) was observed.


2012 ◽  
Vol 565 ◽  
pp. 88-93
Author(s):  
Ming Chen ◽  
Da Peng Dong ◽  
Guo Giang Guo ◽  
Qing Long An

This paper investigates the surface condition of 9Mn2V in conventional surface grinding using SG abrasive under different tempering processes, which includes metallographic structure, micro-hardness, specific grinding energy, surface roughness, surface morphology and surface residual stress. The experimental results indicated that the specific grinding energy increased after the completion of tempering. The ground surface quality improved evidently with the times of tempering increasing. Meanwhile the ground surface was in a state of high tensile residual stress after quenching. After the second time of tempering, the residual stress had significantly been reduced.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 429
Author(s):  
Tengyun Liu ◽  
Peiqi Ge ◽  
Wenbo Bi

Lower warp is required for the single crystal silicon wafers sawn by a fixed diamond wire saw with the thinness of a silicon wafer. The residual stress in the surface layer of the silicon wafer is the primary reason for warp, which is generated by the phase transitions, elastic-plastic deformation, and non-uniform distribution of thermal energy during wire sawing. In this paper, an experiment of multi-wire sawing single crystal silicon is carried out, and the Raman spectra technique is used to detect the phase transitions and residual stress in the surface layer of the silicon wafers. Three different wire speeds are used to study the effect of wire speed on phase transition and residual stress of the silicon wafers. The experimental results indicate that amorphous silicon is generated during resin bonded diamond wire sawing, of which the Raman peaks are at 178.9 cm−1 and 468.5 cm−1. The ratio of the amorphous silicon surface area and the surface area of a single crystal silicon, and the depth of amorphous silicon layer increases with the increasing of wire speed. This indicates that more amorphous silicon is generated. There is both compressive stress and tensile stress on the surface layer of the silicon wafer. The residual tensile stress is between 0 and 200 MPa, and the compressive stress is between 0 and 300 MPa for the experimental results of this paper. Moreover, the residual stress increases with the increase of wire speed, indicating more amorphous silicon generated as well.


Sign in / Sign up

Export Citation Format

Share Document