Calculation Methods of Surrounding Rock Pressure for Small Clear Spacing Shallow Unsymmetrically Loading Tunnel

2012 ◽  
Vol 430-432 ◽  
pp. 1464-1467
Author(s):  
Li Chuan Wang ◽  
Li Min Peng ◽  
Dong Wei Zhou

In the process of construction, it is essential to determine the surrounding rock pressure, which needs to propose the simulation model according to relevant theory, and calculate and analyze the surrounding rock stress, to guarantee the safety of the tunnel construction and operation. However, this has been no perfect calculation theory and formula for surrounding rock stress to unsymmetrically loading tunnel (ULT). The constructed method of failure modes on the shallow ULT are proposed, together with the failure mode for the shallow unsymmetrically load single tunnel, based on the basic assumptions and basic theories of limit analysis method (LAM).

2012 ◽  
Vol 193-194 ◽  
pp. 757-761
Author(s):  
Yong Feng Yun ◽  
De Lun Wu

Adopted the load-structure model to tunnel structure design calculation, our country often use surrounding rock pressure experience calculation formula, This paper analysed the problems existing in the experience calculation formula and calculated the surrounding rock pressure have influence on calculation results of tunnel structure internal force with the formulas, and at last given out more actual modification formula, the surrounding rock stress is continuity with the formula calculated, it is more actual than the traditional experience formula, provided a new way for accurate calculated the surrounding rock pressure.


2012 ◽  
Vol 594-597 ◽  
pp. 1280-1284
Author(s):  
Bo Wen Yang ◽  
Shuang Suo Yang

Analysis of the surrounding rock stress distribution of neighborhood tunnel by using numerical simulation. Based on Cullen-Moore Theory, build a mathematical model of 1st principal stress σ1, 2nd principal stress σ2, internal friction angle φ, and cohesion c, then, make a expression of tunnel spacing safety factor A. Analysis a real tunnel project and evaluate its surrounding rock stability with safety factor A as the index. Propose an analysis method of judging the rationality of tunnel spacing.


2012 ◽  
Vol 446-449 ◽  
pp. 1432-1436
Author(s):  
Suo Wang

In order to predict tunnel surrounding rock pressure, this paper puts forward a series of dynamic numerical simulative model on the tunnel excavation. According to the change of rock damage in the construction program, it adjusts dynamically the mechanical material parameters of surrounding rock. So the model achieves the purpose which is controlling and simulating the process of tunnel progressive damage. In accordance with the numerical simulative results, it analyzes the relationship between the rock parameters with the plastic strain, radial displacement. Then this paper proposes a prediction method of tunnel surrounding rock pressure based on the theory of the progressive damage and method of characteristic curve. Finally, it compares the pressure on the numerical simulative models with on the site date, and it proves that the prediction method has practical engineering value.


2012 ◽  
Vol 170-173 ◽  
pp. 1735-1739
Author(s):  
Ying Na Dong ◽  
Qiang Huang

The surrounding rock stress field monitor has been done in excavation by vibrating wire transducer. The field monitoring data are compared with numerical simulation results. The result shows: Vibrating wire transducer can record the stress variation of surrounding rock and support. Surrounding rock stress changes violently at every excavation step, such as lower bench excavation, the stress variation is mainly controlled by the spatial effect. When the distance from excavation face to the monitoring section is more than a tunnel diameter, the rock stress variation is mainly affected by time and it is relatively smooth and continuous.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Hongjun Guo ◽  
Ming Ji ◽  
Dapeng Liu ◽  
Mengxi Liu ◽  
Gaofeng Li ◽  
...  

In order to further explore the deformation and failure essence of the deep coal body, based on the characteristics of surrounding rock stress adjustment before and after solid coal roadway excavation, an experiment of unloading confining pressure and loading axial pressure of the coal body was designed and conducted in this study. Based on test results, the failure mechanics and energy characteristics of the coal body were analyzed through experiments. Rapid unloading is considered a key factor contributing to lateral deformation and expansion failure, which exacerbates the deterioration of coal body and reduces the deformation energy storage capacity of coal. On the other hand, the larger loading rate tends to shorten the accumulation time of microcracks and cause damage to the coal body, resulting in strengthening the coal body and improving energy storage. Under the circumstance that the coal body is destroyed, the conversion rates of the internal deformation energy and dissipated energy are more significantly affected by unloading rate. The increasing unloading rate and rapid decreases in the conversion rate of deformation energy make the coal body more vulnerable to damage. Under the same stress conditions, the excavation unloading is more likely to deform, destroy, or even throw the coal than the experiment unloading. In order to reduce or avoid the occurrence of deep roadway excavation accidents, the understanding of the excavation unloading including possible influencing factors and the monitoring of the surrounding rock stress and energy during the excavation disturbance should be strengthened. It can be used as the basis for studying the mechanism of deformation and failure of coal and rock and dynamic disasters in deep mines, as well as the prediction, early warning, prevention, and control of related dynamic disasters.


2018 ◽  
Vol 175 ◽  
pp. 04016
Author(s):  
NIU Yan ◽  
Ji Yafei ◽  
Wang Zhao

Tunnel excavation will lead to the immediate surrounding rock unloading caused by the surrounding rock stress release, the stability of the surrounding rock have a certain impact. In this paper, finite element software ANSYS and finite difference software FLAC3D are used to simulate the excavation and lining process of circular tunnel. The influence of excavation on the rock stability around circular tunnel is analyzed, and the effect of applying lining on the stability of surrounding rock is analyzed. Evaluation criteria selection hole displacement, stress and plastic area of three factors.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Yong Zhang ◽  
Huichen Xu ◽  
Peng Song ◽  
Xiaoming Sun ◽  
Manchao He ◽  
...  

The stress concentration of gob-side entry surrounding rock is a hot topic in coal mining. In this paper, through theoretical analysis and numerical simulation, the pressure relief mechanism of the gob-side entry retaining by roof cutting and pressure release (RCPR) and the spatiotemporal development law of surrounding rock stress of the gob-side entry were analyzed. The studies showed that the gob-side entry retaining by RCPR shortened the length of the lateral cantilever by directional roof cutting, which weakened the stress level of the gob-side entry. In the meantime, the goaf gangues could play a good filling role by using their breaking and swelling characteristics under the action of gangue-blocking supports and further optimized the stress environment along the roadway. Field industrial tests verified that the gob-side entry retaining by RCPR had a significant effect on pressure relief, and the surrounding rock stress and deformation tended to stabilize after about 160 m of lagging working face. Numerical analysis reproduced the whole process of “mining-retention-using” of roof cutting roadway and revealed that surrounding rocks were always in the zone of relative stress reduction during the whole process. The peak value of mining-induced lateral stress was about 10 m away from the middle point of the gob-side entry. The change of surrounding rock stress could be divided into three stages: significant increase, dynamic adjustment, and stable stage. However, during the second mining, the stress connected zone would appear on the leading working face, and the stress concentration in this zone was significant. Based on the above analysis, we concluded that the new technology could be applied to the medium-thickness coal seam in the composite roof.


Sign in / Sign up

Export Citation Format

Share Document