Establishing Secure Event Detection with Key Pair in Heterogeneous Wireless Sensor Network

2012 ◽  
Vol 433-440 ◽  
pp. 3445-3450 ◽  
Author(s):  
Anil Khandelwal ◽  
Sanjeev Gupta ◽  
Ravi Shankar Mishra ◽  
Yogeshver Khandagre ◽  
Ashutosh K. Dubey

How to improve the efficiency with security with the extension of lifetime of sensor nodes is the interesting area in the field of Heterogeneous Wireless Sensor Network (WSN). Key management is also an important concept of any secure communication. Expiring secure connections cause that connectivity in network decrease. For decreasing effect of compromising a node on expiring secure connections. The heterogeneity among sensor nodes help provides scalability, notable energy efficiency and security benefits. The previous protocol uses both probabilistic key pre-distribution in the lower tier of the network architecture and public key cryptography in the upper tier to distribute session keys. We proposed a protocol for key establishment which provides a high level of security and minimizes the resource consumption of the sensor devices. This provide a better suited for heterogeneous environment when applied with sensor devices. Finally our proposed protocol is better in comparison from others by applying different simulators.

Author(s):  
Md. Habibur Rahman ◽  
Md. Ibrahim Abdullah

The nodes within a cluster of Wireless Sensor Network deployed in adverse areas face the security threats of eavesdropping and capturing. The fundamental issue in wireless sensor network security is to initialize secure communication between sensor nodes by setting up secret keys between communicating nodes. Because of limited hardware capacity, conventional network cryptography is infeasible for sensor network. In this paper a key management technique is proposed for clustered sensor network that uses some cryptographic operation to generate secret keys. This key is updated in response to the message of cluster head or base station. The key update instructions are stored in each sensor nodes before deployed in sensor field. The updated secret key is used to communicate between nodes and cluster head.


Author(s):  
Sudha H. Thimmaiah ◽  
Mahadevan G

<p>Wireless sensor network (WSN) is composed of low cost, tiny sensor that communicates with each other and transmit sensory data to its base station/sink. The sensor network has been adopted by various industries and organization for their ease of use and is considered to be the most sorted future paradigm. The sensor devices are remotely deployed and powered by batteries. Preserving the energy of sensor devices is most desired. To preserve the battery efficient routing technique is needed. Most routing technique required prior knowledge of sensor nodes location in order to provide energy efficiency. Many existing technique have been proposed in recent time to determine the position of sensor nodes. The existing technique proposed so for suffers in estimating the likelihood of localization error. Reducing the error in localization is most desired. This work present a (Time-of-Arrival) based localization technique and also present adaptive information estimation model to reduce/approximate the localization error in wireless sensor network. The author compares our proposed localization model with existing protocol and analyses its efficiency.</p>


2014 ◽  
Vol 26 (5) ◽  
pp. 616-621 ◽  
Author(s):  
Ningning Wu ◽  
◽  
Juwei Zhang ◽  
Qiangyi Li ◽  
Shiwei Li ◽  
...  

<div class=""abs_img""><img src=""[disp_template_path]/JRM/abst-image/00260005/10.jpg"" width=""200"" /> Nodes moving direction in our scheme</div> Wireless sensor network nodes deployment optimization problem is studied and wireless sensor nodes deployment determines its capability and lifetime. The nodes deployment scheme based on the perceived probability model aiming at wireless sensor network nodes which are randomly deployed is designed. The scheme can be used to calculate the perceived probability in the area around wireless sensor network nodes and move the wireless sensor nodes to the low perceived probability area according to the current energy of the wireless sensor node. The simulation results show that this deployment scheme achieves the goal of the nodes reasonable distribution by improving the network coverage and reducing the nodes movement distance and energy consumption. </span>


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Gulzar Mehmood ◽  
Muhammad Sohail Khan ◽  
Abdul Waheed ◽  
Mahdi Zareei ◽  
Muhammad Fayaz ◽  
...  

Wireless Sensor Network (WSN) is a particular network built from small sensor nodes. These sensor nodes have unique features. That is, it can sense and process data in WSN. WSN has tremendous applications in many fields. Despite the significance of WSN, this kind of network faced several issues. The biggest problems rising in WSN are energy consumption and security. Robust security development is needed to cope with WSN applications. For security purposes in WSN, cryptography techniques are very favorable. However, WSN has resource limitations, which is the main problem in applying any security scheme. Hence, if we are using the cryptography scheme in WSN, we must first guarantee that it must be energy-efficient. Thus, we proposed a secure hybrid session key management scheme for WSN. In this scheme, the major steps of public key cryptography are minimized, and much of the operations are based on symmetric key cryptography. This strategy extensively reduces the energy consumption of WSN and ensures optimum security. The proposed scheme is implemented, and their analysis is performed using different parameters with benchmark schemes. We concluded that the proposed scheme is energy-efficient and outperforms the available benchmark schemes. Furthermore, it provides an effective platform for secure key agreements and management in the WSN environment.


Author(s):  
Santosh Purkar ◽  
Rajkumar S. Deshpande

As Heterogeneous Wireless Sensor Network (HWSN) fulfill the requirements of researchers in the design of real life application to resolve the issues of unattended problem. But, the main constraint face by researchers is energy source available with sensor nodes. To prolong the life of sensor nodes and hence HWSN, it is necessary to design energy efficient operational schemes. One of the most suitable routing scheme is clustering approach, which improves stability and hence enhances performance parameters of HWSN. A novel solution proposed in this article is to design energy efficient clustering protocol for HWSN, to enhance performance parameters by EECPEP-HWSN. Propose protocol is designed with three level nodes namely normal, advance and super node respectively. In clustering process, for selection of cluster head we consider three parameters available with sensor node at run time, i.e., initial energy, hop count and residual energy. This protocol enhance the energy efficiency of HWSN, it improves performance parameters in the form of enhance energy remain in the network, force to enhance stability period, prolong lifetime and hence higher throughput. It is been found that proposed protocol outperforms than LEACH, DEEC and SEP with about 188, 150 and 141 percent respectively.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Asis Kumar Tripathy ◽  
Suchismita Chinara

Wireless sensor network swears an exceptional fine-grained interface between the virtual and physical worlds. The clustering algorithm is a kind of key technique used to reduce energy consumption. Many clustering, power management, and data dissemination protocols have been specifically designed for wireless sensor network (WSN) where energy awareness is an essential design issue. Each clustering algorithm is composed of three phases cluster head (CH) selection, the setup phase, and steady state phase. The hot point in these algorithms is the cluster head selection. The focus, however, has been given to the residual energy-based clustering protocols which might differ depending on the application and network architecture. In this paper, a survey of the state-of-the-art clustering techniques in WSNs has been compared to find the merits and demerits among themselves. It has been assumed that the sensor nodes are randomly distributed and are not mobile, the coordinates of the base station (BS) and the dimensions of the sensor field are known.


Author(s):  
Ashim Pokharel ◽  
Ethiopia Nigussie

Due to limited energy resources, different design strategies have been proposed in order to achieve better energy efficiency in wireless sensor networks, and organizing sensor nodes into clusters and data aggregation are among such solutions. In this work, secure communication protocol is added to clustered wireless sensor network. Security is a very important requirement that keeps the overall system usable and reliable by protecting the information in the network from attackers. The proposed and implemented AES block cipher provides confidentiality to the communication between nodes and base station. The energy efficiency of LEACH clustered network and with added security is analyzed in detail. In LEACH clustering along with the implemented data aggregation technique 48% energy has been saved compared to not clustered and no aggregation network. The energy consumption overhead of the AES-based security is 9.14%. The implementation is done in Contiki and the simulation is carried out in Cooja emulator using sky motes.


Author(s):  
Amit Kumar Kaushik

<span>The Wireless sensor network has been highly focused research area in recent times due to its wide applications and adaptability to different environments. The energy-constrained sensor nodes are always under consideration to increase their lifetime. In this paper we have used the advantages of two approaches i.e. fuzzy c-means clustering and neural network to make an energy efficient network by prolonging the lifetime of network. The cluster formation is done using FCM to form equally sized clusters in network and the decision of choosing cluster head is done using neural network having input distance from basestation, heterogeneity and energy of the node. Our Approach has successfully increased the lifetime and data capacity of the network and outperformed different approaches applied to the network present in literature. </span>


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Santosh V. Purkar ◽  
R. S. Deshpande

Heterogeneous wireless sensor network (HWSN) fulfills the requirements of researchers in the design of real life application to resolve the issues of unattended problem. But, the main constraint faced by researchers is the energy source available with sensor nodes. To prolong the life of sensor nodes and thus HWSN, it is necessary to design energy efficient operational schemes. One of the most suitable approaches to enhance energy efficiency is the clustering scheme, which enhances the performance parameters of WSN. A novel solution proposed in this article is to design an energy efficient clustering protocol for HWSN, to enhance performance parameters by EECPEP-HWSN. The proposed protocol is designed with three level nodes namely normal, advanced, and super, respectively. In the clustering process, for selection of cluster head we consider different parameters available with sensor nodes at run time that is, initial energy, hop count, and residual energy. This protocol enhances the energy efficiency of HWSN and hence improves energy remaining in the network, stability, lifetime, and hence throughput. It has been found that the proposed protocol outperforms than existing well-known LEACH, DEEC, and SEP with about 188, 150, and 141 percent respectively.


Sign in / Sign up

Export Citation Format

Share Document